【題目】給定兩個命題,命題P:函數(shù)f(x)=(a﹣1)x+3在R上是增函數(shù); 命題q:關(guān)于x的方程x2﹣x+a=0有實數(shù)根. 若p∧q為假命題,p∨q為真命題,求實數(shù)a的范圍.
【答案】解:關(guān)于命題P:函數(shù)f(x)=(a﹣1)x+3在R上是增函數(shù),
p為真時,a﹣1>0,解得:a>1;
關(guān)于命題q:關(guān)于x的方程x2﹣x+a=0有實數(shù)根,
q為真時,△=1﹣4a≥0,解得:a≤ ,
若p∧q為假命題,p∨q為真命題,
則p,q一真一假,
p真q假時: ,解得:a>1,
p假q真時: ,解得:a≤ ,
故a∈(﹣∞, ]∪(1,+∞)
【解析】分別求出p,q為真時的a的范圍,通過討論p,q的真假,得到關(guān)于a的不等式組,解出即可.
【考點精析】解答此題的關(guān)鍵在于理解復(fù)合命題的真假的相關(guān)知識,掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時為真,其他情況時為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時為假,其他情況時為真.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+bx2+2x在x=﹣1處取得極值,且在點(1,f(1))處的切線的斜率為2. (Ⅰ)求a,b的值:
(Ⅱ)若關(guān)于x的方程f(x)+x3﹣2x2﹣x+m=0在[ ,2]上恰有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家商場對同一種商品展開促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:
甲商場:顧客轉(zhuǎn)動如圖所示轉(zhuǎn)盤,當(dāng)指針指向陰影部分(圖中兩個陰影部分均為扇形,且每個扇形圓心角均為,邊界忽略不計)即為中獎.
乙商場:從裝有4個白球,4個紅球和4個籃球的盒子中一次性摸出3球(這些球初顏色外完全相同),如果摸到的是3個不同顏色的球,即為中獎.
(Ⅰ)試問:購買該商品的顧客在哪家商場中獎的可能性大?說明理由;
(Ⅱ)記在乙商場購買該商品的顧客摸到籃球的個數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2x3+3ax2+3bx+8在x=1及x=2時取得極值.
(1)求a,b的值;
(2)求曲線f(x)在x=0處的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在D上的函數(shù)f(x),若存在距離為d的兩條直線y=kx+m1和y=kx+m2 , 使得對任意x∈D都有kx+m1≤f(x)≤kx+m2恒成立,則稱函數(shù)f(x)(x∈D)有一個寬度為d的通道.給出下列函數(shù): ①f(x)= ;
②f(x)=sinx;
③f(x)= ;
④f(x)=
其中在區(qū)間[1,+∞)上通道寬度可以為1的函數(shù)有(寫出所有正確的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PB上,PD∥平面MAC,PA=PD= ,AB=4.
(1)求證:M為PB的中點;
(2)求二面角B﹣PD﹣A的大小;
(3)求直線MC與平面BDP所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)對任意實數(shù)x,y恒有f(x)=f(y)+f(x﹣y),當(dāng)x>0時,f(x)<0,且f(2)=﹣3.
(1)求f(0),并判斷函數(shù)f(x)的奇偶性;
(2)證明:函數(shù)f(x)在R上的單調(diào)遞減;
(3)若不等式f(2x﹣3)﹣f(﹣22x)<f(k2x)+6在區(qū)間(﹣2,2)內(nèi)恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題。
(1)已知集合A={x|ax2﹣3x+1=0,a∈R},若A中只有一個元素,求a的取值范圍.
(2)集合A={x|x2﹣6x+5<0},C={x|3a﹣2<x<4a﹣3},若CA,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com