已知M,N為平面區(qū)域
3x-y-6≤0
x-y-2≥0
x≥0
內(nèi)的兩個(gè)動(dòng)點(diǎn),向量
a
=(1,3),則當(dāng)
MN
a
時(shí),|
MN
|2的最大值是( 。
A、4B、8C、20D、40
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:根據(jù)向量平行得到
MN
所在直線的斜率k=3,進(jìn)而得到對(duì)應(yīng)直線的方程,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:∵
MN
a
,
a
=(1,3),
MN
所在直線的斜率k=3,
設(shè)
MN
所在的直線方程為y=3x+b,
∵直線AB方程為3x-y+6=0,對(duì)應(yīng)的斜率k=3,
∴平移直線y=3x+b,由圖象可知當(dāng)M,N位于A,B時(shí),
此時(shí),|
MN
|最值,即|
MN
|2最值,
∵A(2,0),B(0,-6),
∴|
MN
|2=|AB|2=(2-0)2+(-6-0)2=4+36=40,
故選:D.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)向量平行得到
MN
所在直線的方程是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1
1+x
,g(x)=x2+2,若f(2)=2,則f[g(2)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P是底邊長(zhǎng)為2正三棱柱表面上的動(dòng)點(diǎn),MN是該棱柱內(nèi)切球的直徑,則
PM
PN
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

高三某班共有學(xué)生56人,其中女生24人,現(xiàn)用分層抽樣的方法,選取14人參加一項(xiàng)活動(dòng),則應(yīng)選取女生( 。
A、8人B、7人C、6人D、5人

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若平面向量
a
,
b
的夾角為60°,且|
a
|=2|
b
|,則(  )
A、
a
⊥(
b
+
a
B、
b
⊥(
b
-
a
C、
b
⊥(
b
+
a
D、
a
⊥(
b
-
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列的前2項(xiàng)和為2,前4項(xiàng)和為10,則它的前6項(xiàng)和為(  )
A、31B、32C、41D、42

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(0,1,2),B(2,3,4),|AB|=(  )
A、2
3
B、3
2
C、
56
D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),離心率e=
2
,右焦點(diǎn)F(c,0).方程ax2-bx-c=0的兩個(gè)實(shí)數(shù)根分別為x1,x2,則點(diǎn)P(x1,x2)與圓x2+y2=8的位置關(guān)系(  )
A、在圓外B、在圓上
C、在圓內(nèi)D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如表所示為實(shí)驗(yàn)小學(xué)某班(共有50人)學(xué)生一次測(cè)驗(yàn)語(yǔ)文、數(shù)學(xué)兩門學(xué)科成績(jī)的分布,成績(jī)分1-5五個(gè)檔次.例如表中所示語(yǔ)文成績(jī)?yōu)?等且數(shù)學(xué)成績(jī)?yōu)?等的學(xué)生為3人.現(xiàn)任意抽一個(gè)學(xué)號(hào)(1-50),其對(duì)應(yīng)學(xué)生的英語(yǔ)成績(jī)?yōu)閄等,數(shù)學(xué)成績(jī)?yōu)閅等.設(shè)X、Y為隨機(jī)變量.
數(shù)學(xué)
1 2 3 4 5
語(yǔ)文 1 2 3 1 3 1
2 1 0 7 5 1
3 2 1 0 6 3
4 1 m 6 0 n
5 0 0 1 1 2
(1)求“X>3且Y=3”的概率;
(2)求隨機(jī)變量X的概率分布及數(shù)學(xué)期望;
(3)若y的期望為
173
50
,試確定m,n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案