【題目】已知橢圓:的左、右焦點(diǎn)分別為點(diǎn),,其離心率為,短軸長為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)的直線與橢圓交于,兩點(diǎn),過點(diǎn)的直線與橢圓交于,兩點(diǎn),且,證明:四邊形不可能是菱形.
【答案】(1);(2)見解析.
【解析】試題(1)由,及,可得方程;
(2)易知直線不能平行于軸,所以令直線的方程為與橢圓聯(lián)立得,令直線的方程為,可得,進(jìn)而由是菱形,則,即,于是有由韋達(dá)定理代入知無解.
試題解析:
(1)由已知,得,,
又,
故解得,
所以橢圓的標(biāo)準(zhǔn)方程為.
(2)由(1),知,如圖,
易知直線不能平行于軸.
所以令直線的方程為,
,.
聯(lián)立方程,
得,
所以,.
此時(shí),
同理,令直線的方程為,
,,
此時(shí),,
此時(shí).
故.
所以四邊形是平行四邊形.
若是菱形,則,即,
于是有.
又,
,
所以有,
整理得到,
即,上述關(guān)于的方程顯然沒有實(shí)數(shù)解,
故四邊形不可能是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,離心率為,且過點(diǎn).
(1)求雙曲線的方程;
(2)若點(diǎn)在雙曲線上,求 的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓,點(diǎn)是圓內(nèi)一個(gè)定點(diǎn),是圓上任意-一點(diǎn),線段的垂直平分線和半徑相交于點(diǎn),連接,記動(dòng)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)若、是曲線上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)是曲線.上任意-一點(diǎn)(不同于點(diǎn)、),當(dāng)直線、的斜率都存在時(shí),記它們的斜率分別為、,求證:的為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】九章算術(shù)給出求羨除體積的“術(shù)”是:“并三廣,以深乘之,又以袤乘之,六而一”,其中的“廣”指羨除的三條平行側(cè)棱的長,“深”指一條側(cè)棱到另兩條側(cè)棱所在平面的距離,“袤”指這兩條側(cè)棱所在平行線之間的距離,用現(xiàn)代語言描述:在羨除中,,,,,兩條平行線與間的距離為h,直線到平面的距離為,則該羨除的體積為已知某羨除的三視圖如圖所示,則該羨除的體積為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P到直線y=﹣4的距離比點(diǎn)P到點(diǎn)A(0,1)的距離多3.
(1)求點(diǎn)P的軌跡方程;
(2)經(jīng)過點(diǎn)Q(0,2)的動(dòng)直線l與點(diǎn)P的軌交于M,N兩點(diǎn),是否存在定點(diǎn)R使得∠MRQ=∠NRQ?若存在,求出點(diǎn)R的坐標(biāo):若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,為橢圓上不與左右頂點(diǎn)重合的任意一點(diǎn),,分別為的內(nèi)心、重心,當(dāng)軸時(shí),橢圓的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線C頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)F在Y軸的非負(fù)半軸上,點(diǎn)是拋物線上的一點(diǎn).
(1)求拋物線C的標(biāo)準(zhǔn)方程
(2)若點(diǎn)P,Q在拋物線C上,且拋物線C在點(diǎn)P,Q處的切線交于點(diǎn)S,記直線 MP,MQ的斜率分別為k1,k2,且滿足,當(dāng)P,Q在C上運(yùn)動(dòng)時(shí),△PQS的面積是否為定值?若是,求出△PQS的面積;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】質(zhì)檢部門從某超市銷售的甲、乙兩種食用油中分別隨機(jī)抽取100桶檢測某項(xiàng)質(zhì)量指標(biāo),由檢測結(jié)果得到如圖的頻率分布直方圖:
(I)寫出頻率分布直方圖(甲)中的值;記甲、乙兩種食用油100桶樣本的質(zhì)量指標(biāo)的方差分別為,試比較的大小(只要求寫出答案);
(Ⅱ)佑計(jì)在甲、乙兩種食用油中各隨機(jī)抽取1桶,恰有一個(gè)桶的質(zhì)量指標(biāo)大于20,且另—個(gè)桶的質(zhì)量指標(biāo)不大于20的概率;
(Ⅲ)由頻率分布直方圖可以認(rèn)為,乙種食用油的質(zhì)量指標(biāo)值服從正態(tài)分布.其中近似為樣本平均數(shù),近似為樣本方差,設(shè)表示從乙種食用油中隨機(jī)抽取10桶,其質(zhì)量指標(biāo)值位于(14.55, 38.45)的桶數(shù),求的數(shù)學(xué)期望.
注:①同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表,計(jì)算得:
②若,則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在拋物線上,則當(dāng)點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com