【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

(1)若曲線在點處的切線垂直于軸,求實數(shù)的值;

(2)當(dāng)時,求函數(shù)的最小值.

【答案】(1);(2).

【解析】試題分析:

由題得,,則:

(1)由題意可得,;

(2)原問題等價于時,求函數(shù)的最小值.

結(jié)合導(dǎo)函數(shù)的解析式可知函數(shù)在區(qū)間和區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.據(jù)此分類討論可得:當(dāng)時,函數(shù)的最小值為;當(dāng)時,函數(shù)的最小值為.

試題解析:

由題得,

(1)由曲線在點處的切線垂直于軸,得,

,

解得

(2)設(shè),

則只需求當(dāng)時,函數(shù)的最小值.

,解得

,即.

從而函數(shù)在區(qū)間和區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.

當(dāng),即時,函數(shù)在區(qū)間上為減函數(shù),;

當(dāng),即時,函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,所以函數(shù)的極小值即為其在區(qū)間上的最小值,.

綜上可知,當(dāng)時,函數(shù)的最小值為;

當(dāng)時,函數(shù)的最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在北上廣深等十余大中城市,一款叫“一度用車”的共享汽車給市民們提供了一種新型的出行方式.2020年,懷化也將出現(xiàn)共享汽車,用戶每次租車時按行駛里程(1元/公里)加用車時間(0.1元/分鐘)收費(fèi),李先生家離上班地點10公里,每天租用共享汽車上下班,由于堵車因素,每次路上開車花費(fèi)的時間是一個隨機(jī)變量,根據(jù)一段時間統(tǒng)計40次路上開車花費(fèi)時間在各時間段內(nèi)的情況如下:

時間(分鐘)

次數(shù)

8

14

8

8

2

以各時間段發(fā)生的頻率視為概率,假設(shè)每次路上開車花費(fèi)的時間視為用車時間,范圍為分鐘.

(Ⅰ)若李先生上、下班時租用一次共享汽車路上開車不超過45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設(shè)4次使用共享汽車中最優(yōu)選擇的次數(shù),求的分布列和期望

(Ⅱ)若李先生每天上下班使用共享汽車2次,一個月(以20天計算)平均用車費(fèi)用大約是多少(同一時段,用該區(qū)間的中點值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列中,已知,,且,,構(gòu)成等比數(shù)列的前三項.

(1)求數(shù)列的通項公式;

(2)設(shè),求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線)的焦點是橢圓)的右焦點,且兩曲線有公共點

(1)求橢圓的方程;

(2)為坐標(biāo)原點,,,是橢圓上不同的三點,并且的重心,試探究的面積是否為定值.若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是圓內(nèi)一個定點,是圓上任意一點.線段的垂直平分線和半徑相交于點.

(Ⅰ)當(dāng)點在圓上運(yùn)動時,點的軌跡是什么曲線?并求出其軌跡方程;

(Ⅱ)過點作直線與曲線交于、兩點,點關(guān)于原點的對稱點為,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年12月,針對國內(nèi)天然氣供應(yīng)緊張的問題,某市政府及時安排部署,加氣站采取了緊急限氣措施,全市居民打響了節(jié)約能源的攻堅戰(zhàn).某研究人員為了了解天然氣的需求狀況,對該地區(qū)某些年份天然氣需求量進(jìn)行了統(tǒng)計,并繪制了相應(yīng)的折線圖.

(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合年度天然氣需示量 (單位:千萬立方米)與年份 (單位:年)之間的關(guān)系.并且已知關(guān)于的線性回歸方程是,試確定的值,并預(yù)測2018年該地區(qū)的天然氣需求量;

(Ⅱ)政府部門為節(jié)約能源出臺了《購置新能源汽車補(bǔ)貼方案》,該方案對新能源汽車的續(xù)航里程做出了嚴(yán)格規(guī)定,根據(jù)續(xù)航里程的不同,將補(bǔ)貼金額劃分為三類,A類:每車補(bǔ)貼1萬元,B類:每車補(bǔ)貼2.5萬元,C類:每車補(bǔ)貼3.4萬元.某出租車公司對該公司60輛新能源汽車的補(bǔ)貼情況進(jìn)行了統(tǒng)計,結(jié)果如下表:

類型

車輛數(shù)目

10

20

30

為了制定更合理的補(bǔ)貼方案,政府部門決定利用分層抽樣的方式了解出租車公司新能源汽車的補(bǔ)貼情況,在該出租車公司的60輛車中抽取6輛車作為樣本,再從6輛車中抽取2輛車進(jìn)一步跟蹤調(diào)查.若抽取的2輛車享受的補(bǔ)貼金額之和記為“”,求的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線,以坐標(biāo)原點為極點,以軸正半軸為極軸建立極坐標(biāo)系.

(1)求曲線的普通方程和曲線的極坐標(biāo)方程;

(2)若射線與曲線,分別交于兩點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏.將中學(xué)組和大學(xué)組的參賽選手按成績分為優(yōu)秀、良好、一般三個等級,隨機(jī)從中抽取了100名選手進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級人數(shù)的條形圖.

(1)若將一般等級和良好等級合稱為合格等級,根據(jù)已知條件完成下面的列聯(lián)表,據(jù)此資料你是否有95%的把握認(rèn)為選手成績“優(yōu)秀”與文化程度有關(guān)?

優(yōu)秀

合格

合計

大學(xué)組

中學(xué)組

合計

注:,其中.

0.10

0.05

0.005

2.706

3.841

7.879

(2)若參賽選手共6萬人,用頻率估計概率,試估計其中優(yōu)秀等級的選手人數(shù).

(3)在優(yōu)秀等級的選手中取6名,依次編號為1,2,3,4,5,6.在良好等級的選手中取6名,依次編號為1,2,3,4,5,6,在選出的6名優(yōu)秀等級的選手中任取一名,記其編號為,在選出的6名良好等級的選手中任取一名,記其編號為,求使得方程組有唯一一組實數(shù)解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,是平行四邊形,,,,分別是,的中點.

)證明:平面平面;

)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案