如圖所示,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N(點(diǎn)M在點(diǎn)N的右側(cè)),且|MN|=3,已知橢圓D:+=1(a>b>0)的焦距等于2|ON|,且過(guò)點(diǎn)(,).

(1)求圓C和橢圓D的方程;
(2)若過(guò)點(diǎn)M斜率不為零的直線l與橢圓D交于A、B兩點(diǎn),求證:直線NA與直線NB的傾斜角互補(bǔ).
(1)(x-2+(y-2)2= +=1  (2)見(jiàn)解析

(1)解:設(shè)圓的半徑為r,由題意,圓心為(r,2),
因?yàn)閨MN|=3,
所以r2=(2+22=,r=,
故圓C的方程是(x-2+(y-2)2=           ①
在①中,令y=0解得x=1或x=4,
所以N(1,0),M(4,0).
得c=1,a=2,
故b2=3.
所以橢圓D的方程為+=1.
(2)證明:設(shè)直線l的方程為y=k(x-4).

得(3+4k2)x2-32k2x+64k2-12=0                    ②
設(shè)A(x1,y1),B(x2,y2),
則x1+x2=,x1x2=.
當(dāng)x1≠1,x2≠1時(shí),
kAN+kBN=+
=+
=k·
=·[2x1x2-5(x1+x2)+8]
=·
=0.
所以kAN=-kBN,
當(dāng)x1=1或x2=1時(shí),k=±,
此時(shí),對(duì)方程②,Δ=0,不合題意.
所以直線AN與直線BN的傾斜角互補(bǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線與拋物線沒(méi)有交點(diǎn);方程表示橢圓;若為真命題,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

雙曲線C與橢圓=1有相同的焦點(diǎn),直線y=x為C的一條漸近線.求雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的左,右焦點(diǎn)分別為,焦距為,若直線與橢圓的一個(gè)交點(diǎn)滿(mǎn)足,則該橢圓的離心率為              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

P為橢圓=1上一點(diǎn),M、N分別是圓(x+3) 2+y2=4和(x-3) 2+y2=1上的點(diǎn),則|PM|+|PN|的取值范圍是 ( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C1:+=1(a>b>0)的右頂點(diǎn)為A(1,0),過(guò)C1的焦點(diǎn)且垂直長(zhǎng)軸的弦長(zhǎng)為1.

(1)求橢圓C1的方程;
(2)設(shè)點(diǎn)P在拋物線C2:y=x2+h(h∈R)上,C2在點(diǎn)P處的切線與C1交于點(diǎn)M,N.當(dāng)線段AP的中點(diǎn)與MN的中點(diǎn)的橫坐標(biāo)相等時(shí),求h的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓C:+=1(a>b>0)的離心率為.雙曲線x2-y2=1的漸近線與橢圓C有四個(gè)交點(diǎn),以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓C的方程為(  )
A.+=1B.+=1
C.+=1D.+=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓Γ:  +=1(a>b>0)的左、右焦點(diǎn)分別為F1,F2,焦距為2c.若直線y=(x+c)與橢圓Γ的一個(gè)交點(diǎn)滿(mǎn)足∠MF1F2=2∠MF2F1,則該橢圓的離心率等于    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知線段AB的兩個(gè)端點(diǎn)A,B分別在x軸、y軸上滑動(dòng),|AB|=3,點(diǎn)M滿(mǎn)足2=.
(1)求動(dòng)點(diǎn)M的軌跡E的方程.
(2)若曲線E的所有弦都不能被直線l:y=k(x-1)垂直平分,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案