如圖,在正方體中.

(1)求證:平面;
(2)求直線(xiàn)與平面所成的角.

(1)證明詳見(jiàn)解析;(2).

解析試題分析:(1)要證平面,只須證與平面內(nèi)的兩條相交直線(xiàn)、垂直;因?yàn)榱骟w為正方體,易得,且,進(jìn)而可得,問(wèn)題得證;(2)先連接于點(diǎn)或過(guò)點(diǎn)于點(diǎn),然后根據(jù)平面,可證得平面,從而可確定為所求,最后在中求解即可.
試題解析:(1)在正方體中,又,且

在平面內(nèi),且相交
平面                            6分

(2)過(guò)點(diǎn)于點(diǎn),連接                7分
由于四邊形為正方形,所以的中點(diǎn)
,而平面
平面
與面所成的角                      9分
中,
                            11分
直線(xiàn)與平面所成的角為                  12分.
考點(diǎn):1.空間中的垂直關(guān)系;2.線(xiàn)面角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在中,,斜邊可以通過(guò) 以直線(xiàn)為軸旋轉(zhuǎn)得到,且二面角是直二面角.動(dòng)點(diǎn)在斜邊上.

(1)求證:平面平面;
(2)求與平面所成角的最大角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,D是BC的中點(diǎn).

(1)若E為A1C1的中點(diǎn),求證:DE∥平面ABB1A1;
(2)若E為A1C1上一點(diǎn),且A1B∥平面B1DE,求的值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四邊形ABCD為正方形,在四邊形ADPQ中,PD∥QA.又QA⊥平面ABCD,QA=AB=PD.

(1)證明:PQ⊥平面DCQ;
(2)CP上是否存在一點(diǎn)R,使QR∥平面ABCD,若存在,請(qǐng)求出R的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在空間四邊形中,分別是上的點(diǎn),分別是上的點(diǎn),且,求證:三條直線(xiàn)相交于同一點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.若M是線(xiàn)段AD的中點(diǎn),

求證:GM∥平面ABFE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱柱ABCA1B1C1中,側(cè)面AA1C1C⊥底面ABCAA1A1CAC=2,ABBC,ABBC,OAC中點(diǎn).
 
(1)證明:A1O⊥平面ABC;
(2)若E是線(xiàn)段A1B上一點(diǎn),且滿(mǎn)足VEBCC1·VABCA1B1C1,求A1E的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在底面為平行四邊形的四棱錐中,,平面,且,點(diǎn)的中點(diǎn).

(1)求證:;
(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在正方體中,分別的中點(diǎn).

(1)求證:;
(2)已知是靠近的四等分點(diǎn),求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案