已知關于x,y的方程組數(shù)學公式有解,求實數(shù)m的取值范圍.

解:方程可化為(x+1)2+y2=1(y≥0),
表示圓心為(-1,0)、半徑為1的圓x軸以上部分(含于x軸交點).
設直線x+y-m=0與圓相切
=1,
∴m=-1(6分)
如圖若直線x+y-m=0與半圓相交,則方程組有解,
∴m∈[-2,-1+](10分)
分析:其中關于x,y的方程組有解,則表示兩個方程對應的曲線有交點,畫出兩個方程對應的曲線,數(shù)形結(jié)合即可分析出滿足條件的實數(shù)m的取值范圍.
點評:本題考查的知識點是直線與圓的位置關系,其中畫出滿足條件的圖象,用圖象協(xié)助分析兩條曲線之間的關系,是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知關于x,y的方程C:x2+y2-2x-4y+m=0.
(1)當m為何值時,方程C表示圓.
(2)若圓C與直線l:x+2y-4=0相交于M,N兩點,且MN=
4
5
,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x,y的方程C:x2+y2-2x-4y+m=0.
(1)若方程C表示圓,求m的取值范圍;
(2)若圓C與圓x2+y2-8x-12y+36=0外切,求m的值;
(3)若圓C與直線l:x+2y-4=0相交于M,N兩點,且|MN|=
4
5
5
,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x,y的方程C:x2+y2-2x-4y+m=0.
(1)當m為何值時,方程C表示圓.
(2)若圓C與直線l:x+2y-4=0相交于M,N兩點,且|MN|=
4
5
,求m的值.
(3)在(2)條件下,是否存在直線l:x-2y+c=0,使得圓上有四點到直線l的距離為
1
5
,若存在,求出c的范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x,y的方程x2+y2-2x-4y+m=0
(Ⅰ)當m為何值時,此方程表示圓;
(Ⅱ)在(Ⅰ)的條件下,若從點P(3,1)射出的光線,經(jīng)x軸于點Q(
35
,0)處反射后,與圓相切,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x,y的方程C:x2+y2-2x-4y+m=0.
(1)當m為何值時,方程C表示圓.
(2)若圓C與直線l:x+2y-4=0相交于M,N兩點,且|MN|=
4
5
5
,求m的值.
(3)在(2)條件下,是否存在直線l:x-2y+c=0,使得圓上有四點到直線l的距離為
5
5
,若存在,求出c的范圍,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案