已知數(shù)列{an}為等差數(shù)列,a3=5,a7=13,數(shù)列{bn}的前n項(xiàng)和為Sn,且有Sn=2bn-1
(1)求{an}、{bn}的通項(xiàng)公式;
(2)若cn=anbn,{cn}的前n項(xiàng)和為Tn,求Tn;
(3)試比較Tn與anSn的大小,并說(shuō)明理由.
分析:(1)直接利用a3=5,a7=13,列出關(guān)于首項(xiàng)和公差的等式,求出首項(xiàng)和公差即可求{an}的通項(xiàng)公式;再利用Sn=2bn-1及Sn-1=2bn-1-1可得bn=2bn-2bn-1,整理得是公比為2 的等比數(shù)列,再求出首項(xiàng)即可求{bn}的通項(xiàng)公式;
(2)先整理出{cn}的通項(xiàng)公式,因?yàn)槭且坏炔顢?shù)列乘一等比數(shù)列組成的新數(shù)列,所以直接利用錯(cuò)位相減法求和即可;
(3)對(duì)Tn與anSn作差整理得2(n+1-2n),再研究對(duì)應(yīng)函數(shù)f(x)=x+1-2x(x≥1)的單調(diào)性求出其最值即可比較出Tn與anSn的大。
解答:解:(1)∵{an}是等差數(shù)列,且a3=5,a7=13,設(shè)公差為d.
a1+2d=5
a1+6d=13
,解得
a1=1
d=2

∴an=1+2(n-1)=2n-1(n∈N*)(2分)
在{bn}中,∵Sn=2bn-1
當(dāng)n=1時(shí),b1=2b1-1,∴b1=1
當(dāng)n≥2時(shí),由Sn=2bn-1及Sn-1=2bn-1-1可得bn=2bn-2bn-1,∴bn=2bn-1
∴{bn}是首項(xiàng)為1公比為2的等比數(shù)列
∴bn=2n-1(n∈N*)(4分)
(2)cn=anbn=(2n-1)•2n-1
Tn=1+3•2+5•22++(2n-1)•2n-1
2Tn=1•2+3•22+5•23++(2n-3)•2n-1+(2n-1)•2n
①-②得-Tn=1+2•2+2•22++2•2n-1-(2n-1)•2n
=1+2•
2(1-2n-1)
1-2
-(2n-1)•2n

=1+4(2n-1-1)-(2n-1)•2n
=-3-(2n-3)•2n
∴Tn=(2n-3)•2n+3(n∈N*)(8分)
(3)Tn-anSn=(2n-3)•2n+3-(2n-1)(2n-1)
=(2n-3)•2n+3-(2n-1)•2n+2n-1
=2n+2-2•2n
=2(n+1-2n)(9分)
令f(x)=x+1-2x(x≥1),則f'(x)=1-2xln2
∵f'(x)在[1,+∞)是減函數(shù),又f'(1)=1-2ln2=1-ln4<0
∴x≥1時(shí),f'(x)<0
∴x≥1時(shí),f(x)是減函數(shù).
又f(1)=1+1-2=0
∴x≥1時(shí),f(x)≤0
∴x≥1時(shí),x+1-2x≤0(13分)
∴n∈N*時(shí),n+1-2n≤0
∴n∈N*時(shí),Tn≤anSn(14分)
點(diǎn)評(píng):本題的第二問(wèn)考查了數(shù)列求和的錯(cuò)位相減法.錯(cuò)位相減法適用于通項(xiàng)為一等差數(shù)列乘一等比數(shù)列組成的新數(shù)列.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:在數(shù)列{an}中,an>0且an≠1,若
a
an+1
n
為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2009=( 。
A、6026B、6024
C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:在數(shù)列{an}中,an>0且an≠1,若anan+1為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2013等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:在數(shù)列{an}中,an>0,且an≠1,若anan+1為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2011等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出“等和數(shù)列”的定義:從第二項(xiàng)開(kāi)始,每一項(xiàng)與前一項(xiàng)的和都等于一個(gè)常數(shù),這樣的數(shù)列叫做“等和數(shù)列”,這個(gè)常數(shù)叫做“公和”.已知數(shù)列{an}為等和數(shù)列,公和為
1
2
,且a2=1,則a2009=( 。
A、-
1
2
B、
1
2
C、1
D、2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012--2013學(xué)年河南省高二上學(xué)期第一次考試數(shù)學(xué)試卷(解析版) 題型:選擇題

.定義:在數(shù)列{an}中,an>0且an≠1,若為定值,則稱數(shù)列{an}為“等冪數(shù)列”.已知數(shù)列{an}為“等冪數(shù)列”,且a1=2,a2=4,Sn為數(shù)列{an}的前n項(xiàng)和,則S2009= (   )A.6026           B .6024               C.2                     D.4

 

查看答案和解析>>

同步練習(xí)冊(cè)答案