【題目】已知拋物線(xiàn)C的頂點(diǎn)在原點(diǎn),對(duì)稱(chēng)軸是x軸,并且經(jīng)過(guò)點(diǎn),拋物線(xiàn)C的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l.

1)求拋物線(xiàn)C的方程;

2)過(guò)F且斜率為的直線(xiàn)h與拋物線(xiàn)C相交于兩點(diǎn)A、B,過(guò)A、B分別作準(zhǔn)線(xiàn)l的垂線(xiàn),垂足分別為D、E,求四邊形的面積.

【答案】1;(2

【解析】

1)設(shè)拋物線(xiàn)為,根據(jù)點(diǎn)在拋物線(xiàn)上,求出,得到結(jié)果;

2)不妨設(shè),直線(xiàn)的方程為,聯(lián)立直線(xiàn)與拋物線(xiàn)得,解出方程,然后求解、坐標(biāo),轉(zhuǎn)化求解四邊形的面積.

1)根據(jù)題意,設(shè)拋物線(xiàn)為,

因?yàn)辄c(diǎn)在拋物線(xiàn)上,所以,即,

所以?huà)佄锞(xiàn)的方程為.

2)由(1)可得焦點(diǎn),準(zhǔn)線(xiàn)為,

不妨設(shè),

過(guò)且斜率為的直線(xiàn)的方程為,

,得,所以,

代入,得,,

所以,

所以,

因?yàn)樗倪呅?/span>是直角梯形,

所以四邊形的面積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐的底面為直角梯形,,,是以為底邊的等腰直角三角形.

(1)求證:;

(2)若的垂心,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校在2012年的自主招生考試成績(jī)中隨機(jī)抽取名中學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如表所示.

組號(hào)

分組

頻數(shù)

頻率

第1組

5

第2組

第3組

30

第4組

20

第5組

10

(1)請(qǐng)先求出頻率分布表中位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖;

(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第組中用分層抽樣抽取名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;

(3)在(2)的前提下,學(xué)校決定在名學(xué)生中隨機(jī)抽取名學(xué)生接受考官進(jìn)行面試,求:第組至少有一名學(xué)生被考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某地有三家工廠(chǎng),分別位于矩形ABCD的頂點(diǎn)A,B以及CD的中點(diǎn)P處,已知AB=20km,CB=10km,為了處理三家工廠(chǎng)的污水,現(xiàn)要在矩形ABCD內(nèi)(含邊界),且與AB等距離的一點(diǎn)O處建造一個(gè)污水處理廠(chǎng),并鋪設(shè)排污管道AOBO,OP,設(shè)排污管道的總長(zhǎng)為km

(I)設(shè),將表示成的函數(shù)關(guān)系式;

(II)確定污水處理廠(chǎng)的位置,使三條排污管道的總長(zhǎng)度最短,并求出最短值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面是菱形,.

1)證明:平面平面;

2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:

①已知向量的夾角是鈍角,則實(shí)數(shù)的取值范圍是

②函數(shù)的圖像關(guān)于對(duì)稱(chēng);

③函數(shù)的最小正周期為;

④函數(shù)為周期函數(shù);

⑤函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱(chēng)的函數(shù)圖像的解析式為

其中正確命題的序號(hào)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),x∈[0,],若函數(shù)F(x)=f(x)-3的所有零點(diǎn)依次記為,且,則( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形ABCD中,ABCDAD=DC=CB=a,∠ABC=,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=AD,點(diǎn)M在線(xiàn)段EF上。

(1)求證:BC⊥平面ACFE;

(2)若,求證:AM∥平面BDF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓左、右焦點(diǎn)分別為,,短軸的兩個(gè)端點(diǎn)分別為,,點(diǎn)在橢圓上,且滿(mǎn)足,當(dāng)變化時(shí),給出下列四個(gè)命題:①點(diǎn)的軌跡關(guān)于軸對(duì)稱(chēng);②存在使得橢圓上滿(mǎn)足條件的點(diǎn)僅有兩個(gè);③的最小值為2;④最大值為,其中正確命題的序號(hào)是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案