【題目】已知函數(shù)滿足:①定義為;②.

1)求的解析式;

2)若;均有成立,求的取值范圍;

3)設(shè),試求方程的解.

【答案】123,,、

【解析】

1)利用構(gòu)造方程組法即可求得的解析式;

2)根據(jù)不等式,構(gòu)造函數(shù).根據(jù)不等式恒成立可知滿足.求得.通過(guò)判斷的符號(hào)可判斷的單調(diào)性,由其單調(diào)性可得,進(jìn)而可知為單調(diào)遞增函數(shù),即可求得.再根據(jù)及二次函數(shù)性質(zhì),可得的取值范圍;

3)根據(jù)的解析式,畫出函數(shù)圖像.并令,則方程變?yōu)?/span>.解得的值.即可知、.結(jié)合函數(shù)圖像及解析式,即可求得對(duì)應(yīng)方程的解.

1,…

所以

由①②聯(lián)立解得:.

2)設(shè),

,

依題意知:當(dāng)時(shí),

上恒成立,

所以上單調(diào)遞減

上單調(diào)遞增,

,

解得:

實(shí)數(shù)的取值范圍為.

3的圖象如圖所示:

,

當(dāng)時(shí)有1個(gè)解,

當(dāng)時(shí)有2個(gè)解:、,

當(dāng)時(shí)有3個(gè)解:、.

故方程的解分別為:

,,、

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄AP與圓內(nèi)切,且與直線相切,設(shè)動(dòng)圓圓心的軌跡為曲線.

(1)求曲線的方程;

(2)過(guò)曲線上一點(diǎn))作兩條直線,與曲線分別交于不同的兩點(diǎn),若直線的斜率分別為,,且.證明:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,底面,為線段的中點(diǎn).

1)若為線段上的動(dòng)點(diǎn),證明:平面平面;

2)若為線段,上的動(dòng)點(diǎn)(不含,),,三棱錐的體積是否存在最大值?如果存在,求出最大值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的三個(gè)內(nèi)角,,所對(duì)的邊分別為,設(shè),.

1)若,求的夾角;

2)若,求周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的個(gè)數(shù)為(

為真為真的充分不必要條件;

②若數(shù)據(jù)的平均數(shù)為1,則的平均數(shù)為2;

③在區(qū)間上隨機(jī)取一個(gè)數(shù),則事件發(fā)生的概率為

④已知隨機(jī)變量服從正態(tài)分布,且,則.

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

已知函數(shù).

(1)求證: ;

(2)若對(duì)恒成立,求的最大值與的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從拋物線上任意一點(diǎn)Px軸作垂線段,垂足為Q,點(diǎn)M是線段上的一點(diǎn),且滿足

(1)求點(diǎn)M的軌跡C的方程;

(2)設(shè)直線與軌跡c交于兩點(diǎn),TC上異于的任意一點(diǎn),直線,分別與直線交于兩點(diǎn),以為直徑的圓是否過(guò)x軸上的定點(diǎn)?若過(guò)定點(diǎn),求出符合條件的定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中正確的是(

①已知隨機(jī)變量服從正態(tài)分布,且,則

②相關(guān)系數(shù)r用來(lái)衡量?jī)蓚(gè)變量之間線性關(guān)系的強(qiáng)弱,越大,相關(guān)性越弱;

③相關(guān)指數(shù)用來(lái)刻畫回歸的效果,越小,說(shuō)明模型的擬合效果越好;

④在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域越狹窄,其模型擬合的精度就越高.

A.①②B.①④C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,頂點(diǎn)在底面上的投影在棱上,,的中點(diǎn).

1)求證:平面;

2)求二面角的余弦值;

3)已知點(diǎn)的中點(diǎn),在棱上是否存在點(diǎn),使得平面,若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案