【題目】數(shù)列{an}的各項(xiàng)均為正數(shù),a1=t,k∈N* , k≥1,p>0,an+an+1+an+2+…+an+k=6pn
(1)當(dāng)k=1,p=5時(shí),若數(shù)列{an}成等比數(shù)列,求t的值;
(2)設(shè)數(shù)列{an}是一個(gè)等比數(shù)列,求{an}的公比及t(用p、k的代數(shù)式表示);
(3)當(dāng)k=1,t=1時(shí),設(shè)Tn=a1+ + +…+ + ,參照教材上推導(dǎo)等比數(shù)列前n項(xiàng)和公式的推導(dǎo)方法,求證:{ Tn ﹣6n}是一個(gè)常數(shù).

【答案】
(1)解:an+an+1=65n,

an+1+an+2=65n+1,

設(shè)等比數(shù)列(an}的公比是q,

則an+an+1=65n5,

∴q=5,

n=1時(shí),t+5t=30,∴t=5


(2)解:an+an+1+an+2+…+an+k=6pn

an+1+an+2+an+3+…+an+1+k=6pn+1,

數(shù)列{an}是一個(gè)等比數(shù)列,所以求出公比為p,

∴t(pn1+pn+…+pn+k1)=6pn,

項(xiàng)數(shù)為n+k﹣1﹣(n﹣1)十1=k+1項(xiàng),

當(dāng)p=1時(shí),t(k+1)=6,

∴t=

當(dāng)p≠1,且p>0時(shí),t =6pn,

∴t=


(3)證明:∵n是任意的正整數(shù),當(dāng)n=1時(shí), =6P1=6,

依此類推,當(dāng)n取n﹣1項(xiàng)時(shí), = =6,

∴Tn=a1+ + +…+ + ,

Tn= + + +…+ + =a1+ + +…+ +

∴(1+ )Tn=2a1+ + +…+ + =a1+6n﹣6+ ,

Tn ﹣6n=a1﹣6=﹣5


【解析】(1)由an+an+1=65n , an+1+an+2=65n+1 , 得到等比數(shù)列(an}的公比q=5,由此能求出t的值.(2)an+an+1+an+2+…+an+k=6pn , an+1+an+2+an+3+…+an+1+k=6pn+1 , 數(shù)列{an}是一個(gè)等比數(shù)列,所以求出公比為p,由此能求出t.(3)由Tn=a1+ + +…+ + Tn=a1+ + +…+ + ,由此能夠證明 Tn ﹣6n=a1﹣6=﹣5.
【考點(diǎn)精析】本題主要考查了等比數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)點(diǎn),需要掌握通項(xiàng)公式:;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長度單位,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸.已知曲線C1的極坐標(biāo)方程為ρ=2 sin( ),直線C的極坐標(biāo)方程為ρsinθ=1,射線θ=φ,θ= +φ(φ∈[0,π])與曲線C1分別交異于極點(diǎn)O的兩點(diǎn)A,B.
(I)把曲線C1和C2化成直角坐標(biāo)方程,并求直線C2被曲線C1截得的弦長;
(II)求|OA|2+|OB|2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017湖北部分重點(diǎn)中學(xué)高三聯(lián)考)從編號(hào)為001,002,…,500的500個(gè)產(chǎn)品中用系統(tǒng)抽樣的方法抽取一個(gè)樣本,已知樣本編號(hào)從小到大依次為007,032,…,則樣本中最大的編號(hào)應(yīng)該為(  )

A. 483 B. 482

C. 481 D. 480

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的最值;

(2)函數(shù)圖像在點(diǎn)處的切線斜率為有兩個(gè)零點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分8分)直線l過點(diǎn)P4,1),

1)若直線l過點(diǎn)Q(-1,6),求直線l的方程;

2)若直線ly軸上的截距是在x軸上的截距的2倍,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x||x+1|<1},B={x|( x﹣2≥0},則A∩RB=(
A.(﹣2,﹣1)
B.(﹣2,﹣1]
C.(﹣1,0)
D.[﹣1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】養(yǎng)路處建造圓錐形無底倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12m,高4m,養(yǎng)路處擬建一個(gè)更大的圓錐形倉庫,以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大4m(高不變);二是高度增加4m(底面直徑不變).

(1)分別計(jì)算按這兩種方案所建的倉庫的體積;

(2)分別計(jì)算按這兩種方案所建的倉庫的表面積;

(3)哪個(gè)方案更經(jīng)濟(jì)些?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的最小正周期為π.
(1)求ω的值;
(2)討論f(x)在區(qū)間 上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線的右焦點(diǎn)作一條直線,直線與雙曲線相交于兩點(diǎn),且,若有且僅有三條直線,則雙曲線離心率的取值范圍為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案