若直線的極坐標(biāo)方程為,曲線:上的點(diǎn)到直線的距離為,則的最大值為_________.
+1

試題分析:,的直角坐標(biāo)方程分別為,所以,圓上的點(diǎn)到直線的距離最大值為半徑、與圓心到直線距離之和,即1+。
點(diǎn)評:中檔題,首先完成圓的極坐標(biāo)方程與直角坐標(biāo)方程的互化,從而“化生為熟”。確定圓上的點(diǎn)到直線的距離最大值,注意結(jié)合圖形分析,得出結(jié)論。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,過作與軸垂直的直線與橢圓交于S、T兩點(diǎn),與拋物線交于C、D兩點(diǎn),且

(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點(diǎn)的直線與拋物線交于兩點(diǎn),記線段的中點(diǎn)為,過點(diǎn)和這個(gè)拋物線的焦點(diǎn)的直線為,的斜率為,則直線的斜率與直線的斜率之比可表示為的函數(shù)        __   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知分別是雙曲線的兩個(gè)焦點(diǎn),是以(為坐標(biāo)原點(diǎn))為圓心,為半徑的圓與該雙曲線左支的兩個(gè)交點(diǎn),且是等邊三角形,則雙曲線的離心率為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:()經(jīng)過兩點(diǎn).

(Ⅰ)求橢圓的方程;
(Ⅱ)過原點(diǎn)的直線l與橢圓C交于A、B兩點(diǎn),橢圓C上一點(diǎn)M滿足.求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩條直線 :y="m" 和: y=(m>0),與函數(shù)的圖像從左至右相交于點(diǎn)A,B ,與函數(shù)的圖像從左至右相交于C,D .記線段AC和BD在X軸上的投影長度分別為a ,b ,當(dāng)m 變化時(shí),的最小值為
A.           B.        C.    D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)是離心率為的橢圓上的一點(diǎn),斜率為的直線交橢圓、兩點(diǎn),且、、三點(diǎn)不重合.
(1)求橢圓的方程;
(2)的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知、分別為橢圓的上、下焦點(diǎn),其中也是拋物線的焦點(diǎn),點(diǎn)在第二象限的交點(diǎn),且。

(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn)(1,3)和圓,過點(diǎn)的動(dòng)直線與圓相交于不同的兩點(diǎn),在線段取一點(diǎn),滿足:,)。
求證:點(diǎn)總在某定直線上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線x2=4py(p>0)與雙曲線有相同的焦點(diǎn)F,點(diǎn)A 是兩曲線的一個(gè)交點(diǎn),且AF丄y軸,則雙曲線的離心率為
A,    B.    C.    D.

查看答案和解析>>

同步練習(xí)冊答案