【題目】已知橢圓x軸負(fù)半軸交于,離心率.

1)求橢圓C的方程;

2)設(shè)直線與橢圓C交于兩點(diǎn),連接AM,AN并延長(zhǎng)交直線x=4兩點(diǎn),若,直線MN是否恒過(guò)定點(diǎn),如果是,請(qǐng)求出定點(diǎn)坐標(biāo),如果不是,請(qǐng)說(shuō)明理由.

【答案】(1)(2)直線恒過(guò)定點(diǎn),詳見(jiàn)解析

【解析】

1)依題意由橢圓的簡(jiǎn)單性質(zhì)可求出,即得橢圓C的方程;

2)設(shè)直線的方程為:,聯(lián)立直線的方程與橢圓方程可求得點(diǎn)的坐標(biāo),同理可求出點(diǎn)的坐標(biāo),根據(jù)的坐標(biāo)可求出直線的方程,將其化簡(jiǎn)成點(diǎn)斜式,即可求出定點(diǎn)坐標(biāo).

1)由題有,.,∴.∴橢圓方程為.

2)設(shè)直線的方程為:,則

,∴,同理

當(dāng)時(shí),由.,同理,又

,

當(dāng)時(shí),∴直線的方程為

∴直線恒過(guò)定點(diǎn),當(dāng)時(shí),此時(shí)也過(guò)定點(diǎn)..

綜上:直線恒過(guò)定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),給出下列命題,其中正確命題的個(gè)數(shù)為

①當(dāng)時(shí),上單調(diào)遞增;

②當(dāng)時(shí),存在不相等的兩個(gè)實(shí)數(shù),使;

③當(dāng)時(shí),3個(gè)零點(diǎn).

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,,,,分別是,的中點(diǎn).

1)求證:平面平面

2)求證:平面;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 表示兩條不同的直線, , , 表示三個(gè)不同的平面,給出下列四個(gè)命題:

, ,則;

, , ,則;

, ,則;

, ,則

其中正確命題的序號(hào)為( )

A. ①② B. ②③ C. ③④ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)直線的方程為,.

(1)若在兩坐標(biāo)軸上的截距相等,求的方程;

(2)若與兩坐標(biāo)軸圍成的三角形的面積為6,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的離心率為,橢圓上一點(diǎn)到左右兩個(gè)焦點(diǎn)的距離之和是4.

(1)求橢圓的方程;

(2)已知過(guò)的直線與橢圓交于兩點(diǎn),且兩點(diǎn)與左右頂點(diǎn)不重合,若,求四邊形面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形的邊長(zhǎng)為,將沿對(duì)角線折起,使平面平面,得到如圖所示的三棱錐,若邊的中點(diǎn),分別為上的動(dòng)點(diǎn)(不包括端點(diǎn)),且,設(shè),則三棱錐的體積取得最大值時(shí),三棱錐的內(nèi)切球的半徑為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,若函數(shù)y=f(f(x)﹣a)﹣1有三個(gè)零點(diǎn),則a的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線過(guò)點(diǎn)(3,-2)且與橢圓4x2+9y2=36有相同的焦點(diǎn).

(1)求雙曲線的標(biāo)準(zhǔn)方程;

(2)若點(diǎn)M在雙曲線上,F(xiàn)1,F(xiàn)2為左、右焦點(diǎn),且|MF1|+|MF2|=6,試判別△MF1F2的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案