精英家教網 > 高中數學 > 題目詳情

(選修4—2   矩陣與變換)(本題滿分7分)

變換是將平面上每個點的橫坐標乘2,縱坐標乘4,變到點

(Ⅰ)求變換的矩陣;

(Ⅱ)圓在變換的作用下變成了什么圖形?

 

【答案】

(Ⅰ)        (Ⅱ)變成了橢圓

【解析】本試題主要是考查了矩陣的運算,以及圖像的變換的綜合運用。

(1)由已知得,因此變化T的矩陣是

(2)由,得:,代入方程中得到結論。

解: (1)(選修4—2   矩陣與變換)(本題滿分7分)

(Ⅰ)由已知得

變化T的矩陣是                                  …………3分

(Ⅱ)由,得:,

代入方程,得:

∴圓C:在變化T的作用下變成了橢圓   …………7分

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(“選修4-2矩陣與變換”)
已知y=f(x)的圖象(如圖1)經A=
.
ab
cd
.
作用后變換為曲線C(如圖2).
(Ⅰ)求矩陣A;
(Ⅱ)求矩陣A的特征值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(選修4-2 矩陣與變換)
變換T是將平面上每個點M(x,y)的橫坐標乘2,縱坐標乘4,變到點M'(2x,4y).
(Ⅰ)求變換T的矩陣;
(Ⅱ)圓C:x2+y2=1在變換T的作用下變成了什么圖形?

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)(選修4-2 矩陣與變換)已知矩陣A=
12
-14
,向量
α
=
7
4

①求矩陣A的特征值λ1、λ2和特征向量
α1
α2

②求A5
α
的值.
(2)選修4-4:坐標系與參數方程求極坐標系中,圓ρ=2上的點到直線ρ(cosθ+
3
sinθ)=6
的距離的最小值.
(3)選修4-5;不等式選講知x,y,z為正實數,且
1
x
+
1
y
+
1
z
=1,求x+4y+9z的最小值及取得最小值時x,y,z的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•鹽城二模)選修4-2  矩陣與變換
已知矩陣M=
12
2x
的一個特征值為3,求另一個特征值及其對應的一個特征向量.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)選修4-2矩陣與變換:
已知矩陣M=
.
2a
21
.
,其中a∈R,若點P(1,-2)在矩陣M的變換下得到點P′(-4,0).
①求實數a的值;
②求矩陣M的特征值及其對應的特征向量.
(2)選修4-4參數方程與極坐標:
已知曲線C的極坐標方程是ρ=4cosθ.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數方程是
x=
2
2
t+m
y=
2
2
t
(t是參數).若l與C相交于AB兩點,且AB=
14

①求圓的普通方程,并求出圓心與半徑;
②求實數m的值.

查看答案和解析>>

同步練習冊答案