【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足Sn=2an﹣2,若數(shù)列{bn}滿足bn=10﹣log2an , 則使數(shù)列{bn}的前n項和取最大值時的n的值為

【答案】9或10
【解析】解:∵Sn=2an﹣2,∴n=1時,a1=2a1﹣2,解得a1=2. n≥2時,an=Sn﹣Sn1=2an﹣2﹣(2an1﹣2),∴an=2an1
∴數(shù)列{an}是等比數(shù)列,公比為2.
∴an=2n
∴bn=10﹣log2an=10﹣n.
由bn=10﹣n≥0,解得n≤10.
∴使數(shù)列{bn}的前n項和取最大值時的n的值為9或10.
所以答案是:9或10.
【考點精析】掌握數(shù)列的前n項和是解答本題的根本,需要知道數(shù)列{an}的前n項和sn與通項an的關系

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知AD是△ABC內角∠BAC的角平分線.
(1)用正弦定理證明:
(2)若∠BAC=120°,AB=2,AC=1,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=ex , f(x)=g(x)﹣h(x),且g(x)為偶函數(shù),h(x)為奇函數(shù),若存在實數(shù)m,當x∈[﹣1,1]時,不等式mg(x)+h(x)≥0成立,則m的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.
(Ⅰ)在平面PAB內找一點M,使得直線CM∥平面PBE,并說明理由;
(Ⅱ)若二面角P﹣CD﹣A的大小為45°,求直線PA與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形PDCE為矩形,四邊形ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD= CD=1.
(1)若M為PA中點,求證:AC∥平面MDE;
(2)若平面PAD與PBC所成的銳二面角的大小為 ,求線段PD的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)集A={a1 , a2 , …,an}(1=a1<a2<…<an , n≥2)具有性質P:對任意的k(2≤k≤n),i,j(1≤i≤j≤n),使得ak=ai+aj成立.
(Ⅰ)分別判斷數(shù)集{1,3,4}與{1,2,3,6}是否具有性質P,并說明理由;
(Ⅱ)求證:an≤2a1+a2+…+an1(n≥2);
(Ⅲ)若an=72,求數(shù)集A中所有元素的和的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,若存在x1、x2、…xn滿足 = =…= = ,則x1+x2+…+xn的值為(
A.4
B.6
C.8
D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l:y=﹣x+3與橢圓C:mx2+ny2=1(n>m>0)有且只有一個公共點P(2,1).
(I)求橢圓C的標準方程;
(II)若直線l′:y=﹣x+b交C于A,B兩點,且PA⊥PB,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ2=4 ρsin(θ+ )﹣4.
(Ⅰ)求曲線C2的直角坐標方程,并指出其表示何種曲線;
(Ⅱ)若曲線C1與曲線C2交于A、B兩點,求|AB|的最大值和最小值.

查看答案和解析>>

同步練習冊答案