已知函數(shù)f(x)=x3-x2+bx+a(a,b∈R),且其導(dǎo)函數(shù)f′(x)的圖象過原點(diǎn).
(1)若存在x<0,使得f′(x)=-9,求a的最大值;
(2)當(dāng)a>0時,求函數(shù)f(x)的極值.
f(x)=x3-x2+bx+a,f′(x)=x2-(a+1)x+b
由f′(0)=0得b=0,f′(x)
=x(x-a-1).
(1)存在x<0,使得f′(x)
=x(x-a-1)=-9,
-a-1=-x-=(-x)+≥2=6,
∴a≤-7,
當(dāng)且僅當(dāng)x=-3時,a=-7.所以a的最大值為-7.
(2)當(dāng)a>0時,x,f′(x),f(x)的變化情況如下表:
x
(-∞,0)
0
(0,
a+1)
a+1
(a+1,
+∞)
f′(x)

0

0

f(x)
?
極大值
?
極小值
?
f(x)的極大值f(0)=a>0,
f(x)的極小值f(a+1)
=a-(a+1)3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)的單調(diào)減區(qū)間是(1,2)
⑴求的解析式;
⑵若對任意的,關(guān)于的不等式
時有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)若直線過點(diǎn),且與曲線都相切,
求實(shí)數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

的導(dǎo)函數(shù)為,則數(shù)列的前
和為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(本小題滿分12分)
(Ⅰ)設(shè)函數(shù),證明:當(dāng)時,
(Ⅱ)從編號1到100的100張卡片中每次隨機(jī)抽取一張,然后放回,用這種方式連續(xù)抽取20次,設(shè)抽到的20個號碼互不相同的概率為,證明:
(Ⅰ)設(shè)函數(shù),證明:當(dāng)時,
(Ⅱ)從編號1到100的100張卡片中每次隨機(jī)抽取一張,然后放回,用這種方式連續(xù)抽取20次,設(shè)抽到的20個號碼互不相同的概率為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如右圖所示,已知A為拋物線C:y=2x2上的點(diǎn),直線l1過點(diǎn)A,且
與拋物線C相切,直線l2:x=a交拋物線C于點(diǎn)B,交直線l1于點(diǎn)D.
(1)求直線l1的方程;
(2)求△ABD的面積S1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(e為自然對數(shù)的底數(shù))
(Ⅰ)求函數(shù)單調(diào)遞增區(qū)間;(5分)
(Ⅱ)若,求函數(shù)在區(qū)間[0,]上的最大值和最小值.(5分)
(III)若函數(shù)的圖象有三個不同的交點(diǎn),求實(shí)數(shù)k的取值范圍.
(參考數(shù)據(jù))(2分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知都是定義在R上的函數(shù),且,
,則的值為(   )
A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè),n∈N,
          (    )
A.B.-C.D.-

查看答案和解析>>

同步練習(xí)冊答案