【題目】關于異面直線,有下列四個命題:
(1)過直線有且僅有一個平面,使//;
(2)過直線有且僅有一個平面,使 ;
(3)在空間中存在平面,使//,//;
(4)在空間中不存在平面,使 , ;
其中正確命題的序號是____________.
【答案】(1)(3)(4)
【解析】
利用線面平行的性質可證(1)成立,用反證法可得(2)錯誤,(4)正確,利用線面平行的判定定理可得(3)正確.
在直線選一點,過作直線,由公理3的推論可知存在平面,使得,因異面,故,所以,若存在不同的平面,使得,則,故,與異面矛盾,故(1)正確.
對于(2),若存在平面,使得,因,故,所以當不垂直時,(2)就不成立,故(2)錯.
對于(4),如存在平面,使得,則,與異面矛盾,故(4)正確.
對于(3),在空間中取,過分別作的平行線,設相交直線確定的平面為(如果中有一條直線在該平面中,可平移該平面使得均在平面外),則,故(3)正確.
綜上,填(1)(3)(4).
科目:高中數學 來源: 題型:
【題目】連接球面上兩點的線段稱為球的弦,半徑為4的球的兩條弦AB,CD的長度分別為2 和4 ,M,N分別是AB,CD的中點,兩條弦的兩端都在球面上運動,有下面四個命題:
①弦AB,CD可能相交于點M;
②弦AB,CD可能相交于點N;
③MN的最大值是5;
④MN的最小值是1;
其中所有正確命題的序號為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,M、N、P分別是正方體ABCD-A1B1C1D1的棱AB、BC、DD1上的點.
(1)若,求證:無論點P在DD1上如何移動,總有BP⊥MN;
(2)棱DD1上是否存在這樣的點P,使得平面APC1⊥平面ACC1?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在下列結論中:
①若向量共線,則向量所在的直線平行;
②若向量所在的直線為異面直線,則向量一定不共面;
③若三個向量兩兩共面,則向量共面;
④已知空間的三個向量,則對于空間的任意一個向量總存在實數x,y,z使得.
其中正確結論的個數是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}(n≥1,n∈N)滿足a1=2,a2=6,且(an+2﹣an+1)﹣(an+1﹣an)=2,若[x]表示不超過x的最大整數,則[ + +…+ ]= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l的參數方程為 ,(t為參數),以坐標原點為極點,x正半軸為極軸,建立極坐標系,曲線C的極坐標方程是ρ= .
(1)寫出直線l的極坐標方程與曲線C的直角坐標方程.
(2)若點P是曲線C上的動點,求點P到直線l的距離的最小值,并求出此時點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com