【題目】在①是與的等差中項;②是與的等比中項;③數(shù)列的前5項和為65這三個條件中任選一個,補(bǔ)充在橫線中,并解答下面的問題.
已知是公差為2的等差數(shù)列,其前項和為,________________________.
(1)求;
(2)設(shè),是否存在,使得?若存在,求出的值;若不存在,說明理由.
【答案】(1)不論選哪個條件,(2)不存在,見解析
【解析】
(1)如果是①或者②,用和表示出已知數(shù)列的項和前項和,求出,可得通項公式,如果是③,先說明數(shù)列是公差為4的等差數(shù)列,首期為,由等差數(shù)列前項和公式可求得,同樣得通項公式;
(2)用作差法求出中的最大項,而,得結(jié)論不存在項.
(1)解:若選①是與的等差中項,則,
即.
解得.所以.
若選②是與的等比中項,則,
即.
解得.所以.
若選③數(shù)列的前5項和為65,
則.
又,所以是首項為,公差為4的等差數(shù)列.
由的前5項和為65,得.
解得.所以.
(2).
.
所以;
所以.
所以中的最大項為.
顯然.所以.
所以不存在,使得.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司準(zhǔn)備上市一款新型轎車零配件,上市之前擬在其一個下屬4S店進(jìn)行連續(xù)30天的試銷.定價為1000元/件.試銷結(jié)束后統(tǒng)計得到該4S店這30天內(nèi)的日銷售量(單位:件)的數(shù)據(jù)如下表:
日銷售量 | 40 | 60 | 80 | 100 |
頻數(shù) | 9 | 12 | 6 | 3 |
(1)若該4S店試銷期間每個零件的進(jìn)價為650元/件,求試銷連續(xù)30天中該零件日銷售總利潤不低于24500元的頻率;
(2)試銷結(jié)束后,這款零件正式上市,每個定價仍為1000元,但生產(chǎn)公司對該款零件不零售,只提供零件的整箱批發(fā),大箱每箱有60件,批發(fā)價為550元/件;小箱每箱有45件,批發(fā)價為600元/件.該4S店決定每天批發(fā)兩箱,根據(jù)公司規(guī)定,當(dāng)天沒銷售出的零件按批發(fā)價的9折轉(zhuǎn)給該公司的另一下屬4S店.假設(shè)該4店試銷后的連續(xù)30天的日銷售量(單位:件)的數(shù)據(jù)如下表:
日銷售量 | 50 | 70 | 90 | 110 |
頻數(shù) | 5 | 15 | 8 | 2 |
(。┰O(shè)該4S店試銷結(jié)束后連續(xù)30天每天批發(fā)兩大箱,這30天這款零件的總利潤;
(ⅱ)以總利潤作為決策依據(jù),該4S店試銷結(jié)束后連續(xù)30天每天應(yīng)該批發(fā)兩大箱還是兩小箱?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的焦點為F ,已知點A ,B 為拋物線上的兩個動點,且滿足.過弦AB 的中點M 作拋物線準(zhǔn)線的垂線MN ,垂足為N,則 的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距和短軸長度相等,且過點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)圓與橢圓C分別交y軸正半軸于點A,B,過點(,且)且與x軸垂直的直線l分別交圓O與橢圓C于點M,N(均位于x軸上方),問直線AM,BN的交點是否在一條定直線上,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點分別為橢圓的左右頂點和右焦點,過點的直線交橢圓于點.
(1)若,點與橢圓左準(zhǔn)線的距離為,求橢圓的方程;
(2)已知直線的斜率是直線斜率的倍.
①求橢圓的離心率;
②若橢圓的焦距為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某溫泉度假村擬以泉眼為圓心建造一個半徑為米的圓形溫泉池,如圖所示,、是圓上關(guān)于直徑對稱的兩點,以為圓心,為半徑的圓與圓的弦、分別交于點、,其中四邊形為溫泉區(qū),I、II區(qū)域為池外休息區(qū),III、IV區(qū)域為池內(nèi)休息區(qū),設(shè).
(1)當(dāng)時,求池內(nèi)休息區(qū)的總面積(III和IV兩個部分面積的和);
(2)當(dāng)池內(nèi)休息區(qū)的總面積最大時,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一胸針圖樣由等腰三角形及圓心在中軸線上的圓弧構(gòu)成,已知,.為了增加胸針的美觀程度,設(shè)計師準(zhǔn)備焊接三條金絲線且長度不小于長度,設(shè).
(1)試求出金絲線的總長度,并求出的取值范圍;
(2)當(dāng)為何值時,金絲線的總長度最小,并求出的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.命題“若,則”的否命題是“若,則”
B.命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為假命題.
C.“”是“”的必要不充分條件
D.若“p或q”為真命題,則p,q至少有一個為真命題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com