【題目】如圖,在四棱錐中,底面,底面是直角梯形,.

(1)證明:當(dāng)點(diǎn)上運(yùn)動(dòng)時(shí),始終有平面平面;

(2)求銳二而角的余弦值.

【答案】(1)證明見(jiàn)解析;(2).

【解析】

(1)由底面ABCD,證得,又由勾股定理,得,利用線面垂直的判定定理,得到平面PBC,再由面面垂直的判定定理,可得平面平面,即可得到結(jié)論;

(2)分別以CDCF,CP所在直線為x,yz軸建立空間直角坐標(biāo)系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.

(1)由題意,因?yàn)?/span>底面ABCD,平面ABCD,所以,

又因?yàn)?/span>,所以,所以,

所以,從而得到

平面PBC平面PBC,,所以平面PBC,

平面,所以平面平面,

所以當(dāng)點(diǎn)EPB上運(yùn)動(dòng)時(shí),始終有平面平面PBC.

(2)由條件知底面ABCD,且

所以過(guò)點(diǎn)CAB于點(diǎn)F,分別以CD,CF,CP所在直線為xy,z軸建立空間直角坐標(biāo)系(如圖所示),

所以,,.

由(1)知為平面PBC的一個(gè)法向量,

因?yàn)?/span>,

設(shè)平面PAB的一個(gè)法向量為,則

,令,則,所以

所以,

故銳二面角的余弦值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng),且時(shí),試求函數(shù)的最小值;

(2)若對(duì)任意的恒成立,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)國(guó)際智能產(chǎn)業(yè)博覽會(huì)(智博會(huì))每年在重慶市舉辦一屆,每年參加服務(wù)的志愿者分“嘉賓”、“法醫(yī)”等若干小組,年底,來(lái)自重慶大學(xué)、西南大學(xué)、重慶醫(yī)科大學(xué)、西南政法大學(xué)的500名學(xué)生在重慶科技館多功能廳參加了“志愿者培訓(xùn)”,如圖是四所大學(xué)參加培訓(xùn)人數(shù)的不完整條形統(tǒng)計(jì)圖,現(xiàn)用分層抽樣的方法從中抽出20人作為2019年中國(guó)國(guó)際智博會(huì)服務(wù)的志愿者.

(1)分別求出從重慶大學(xué)、西南大學(xué)、重慶醫(yī)科大學(xué)、西南政法大學(xué)抽出的志愿者人數(shù);

(2)若“嘉賓”小組的2名志愿者只能從重慶醫(yī)科大學(xué)或西南政法大學(xué)抽出,求這2人分別來(lái)自不同大學(xué)的概率(結(jié)果用分?jǐn)?shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線和動(dòng)直線.直線交拋物線兩點(diǎn),拋物線處的切線的交點(diǎn)為.

1)當(dāng)時(shí),求以為直徑的圓的方程;

2)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018 年1月16日,由新華網(wǎng)和中國(guó)財(cái)經(jīng)領(lǐng)袖聯(lián)盟聯(lián)合主辦的2017中國(guó)財(cái)經(jīng)年度人物評(píng)選結(jié)果揭曉,某知名網(wǎng)站財(cái)經(jīng)頻道為了解公眾對(duì)這些年度人物是否了解,利用網(wǎng)絡(luò)平臺(tái)進(jìn)行了調(diào)查,并從參與調(diào)查者中隨機(jī)選出人,把這人分為 兩類(lèi)(類(lèi)表示對(duì)這些年度人物比較了解,類(lèi)表示對(duì)這些年度人物不太了解),并制成如下表格:

年齡段

歲~

歲~

歲~

歲~

人數(shù)

類(lèi)所占比例

(1)若按照年齡段進(jìn)行分層抽樣,從這人中選出人進(jìn)行訪談,并從這人中隨機(jī)選出兩名幸運(yùn)者給予獎(jiǎng)勵(lì).求其中一名幸運(yùn)者的年齡在歲~歲之間,另一名幸運(yùn)者的年齡在歲~歲之間的概率;(注:從人中隨機(jī)選出人,共有種不同選法)

(2)如果把年齡在 歲~歲之間的人稱(chēng)為青少年,年齡在歲~歲之間的人稱(chēng)為中老年,則能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為青少年與中老年人在對(duì)財(cái)經(jīng)年度人物的了解程度上有差異?

參考數(shù)據(jù):

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】條形碼是由一組規(guī)則排列的條、空及其對(duì)應(yīng)的代碼組成,用來(lái)表示一定的信息,我們通常見(jiàn)的條形碼是“”通用代碼,它是由從左到右排列的個(gè)數(shù)字(用,,…,表示)組成,這些數(shù)字分別表示前綴部分、制造廠代碼、商品代碼和校驗(yàn)碼,其中是校驗(yàn)碼,用來(lái)校驗(yàn)前個(gè)數(shù)字代碼的正確性.圖(1)是計(jì)算第位校驗(yàn)碼的程序框圖,框圖中符號(hào)表示不超過(guò)的最大整數(shù)(例如).現(xiàn)有一條形碼如圖(2)所示(),其中第個(gè)數(shù)被污損,那么這個(gè)被污損數(shù)字是( )

  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著城市地鐵建設(shè)的持續(xù)推進(jìn),市民的出行也越來(lái)越便利.根據(jù)大數(shù)據(jù)統(tǒng)計(jì),某條地鐵線路運(yùn)行時(shí),發(fā)車(chē)時(shí)間間隔t(單位:分鐘)滿足:4≤t≤15,N,平均每趟地鐵的載客人數(shù)p(t)(單位:人)與發(fā)車(chē)時(shí)間間隔t近似地滿足下列函數(shù)關(guān)系:,其中.

(1)若平均每趟地鐵的載客人數(shù)不超過(guò)1500人,試求發(fā)車(chē)時(shí)間間隔t的值.

(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問(wèn)當(dāng)發(fā)車(chē)時(shí)間間隔t為多少時(shí),平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方體中,,分別是棱的中點(diǎn),是底面內(nèi)一動(dòng)點(diǎn),若直線與平面平行,則三角形面積最小值為( )

A.B.1C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(2x-4)exa(x+2)2(x>0,aR,e是自然對(duì)數(shù)的底數(shù)).

(1)f(x)(0,+∞)上的單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;

(2)當(dāng)a時(shí),證明:函數(shù)f(x)有最小值,并求函數(shù)f(x)的最小值的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案