【題目】已知橢圓經(jīng)過點(diǎn),其離心率為

(1)求橢圓的方程;

(2)若不經(jīng)過點(diǎn)的直線與橢圓相交于兩點(diǎn),且,證明:直線經(jīng)過定點(diǎn).

【答案】(1)(2)直線經(jīng)過定點(diǎn)

【解析】

1)由eb1,又a2b2+c2,即可求出橢圓的方程;

2)設(shè)lykx+m,聯(lián)立橢圓方程,由此利用韋達(dá)定理、直線方程,結(jié)合已知條件可得k2+1x1x2+kmk)(x1+x2+m22m+10k2+1)(4m24)﹣(kmk8km+m22m+1)(1+4k2)=0,化簡整理能證明直線l過定點(diǎn).

解:(1)∵橢圓經(jīng)過點(diǎn),其離心率為

,∴

故橢圓的方程為:;

(2)依題意直線的斜率存在,設(shè)不經(jīng)過點(diǎn)的直線方程為:,

,

,

,

,或,

∵直線不經(jīng)過點(diǎn),∴

此時(shí),直線經(jīng)過定點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】非空有限集合是由若干個(gè)正實(shí)數(shù)組成,集合的元素個(gè)數(shù).對(duì)于任意,數(shù)中至少有一個(gè)屬于,稱集合好集”:否則,稱集合壞集”.

1)判斷好集”,還是壞集;

2)題設(shè)的有限集合,既有大于1的元素,又有小于1的元素,證明:集合壞集”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直平行六面體的所有棱長都為2,,過體對(duì)角線的截面S與棱分別交于點(diǎn)E、F,給出下列命題中:

①四邊形的面積最小值為;

②直線EF與平面所成角的最大值為;

③四棱錐的體積為定值;

④點(diǎn)到截面S的距離的最小值為.

其中,所有真命題的序號(hào)為(

A.①②③B.①③④C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2014年7月18日15時(shí),超強(qiáng)臺(tái)風(fēng)“威馬遜”登陸海南省.據(jù)統(tǒng)計(jì),本次臺(tái)風(fēng)造成全省直接經(jīng)濟(jì)損失119.52億元.適逢暑假,小明調(diào)查住在自己小區(qū)的50戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,作出如下頻率分布直方圖:

經(jīng)濟(jì)損失

4000元以下

經(jīng)濟(jì)損失

4000元以上

合計(jì)

捐款超過500元

30

捐款低于500元

6

合計(jì)

(1)臺(tái)風(fēng)后區(qū)委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如上表,在表格空白處填寫正確數(shù)字,并說明是否有以上的把握認(rèn)為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?

(2)臺(tái)風(fēng)造成了小區(qū)多戶居民門窗損壞,若小區(qū)所有居民的門窗均由李師傅和張師傅兩人進(jìn)行維修,李師傅每天早上在7:00到8:00之間的任意時(shí)刻來到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時(shí)刻來到小區(qū),求連續(xù)3天內(nèi),李師傅比張師傅早到小區(qū)的天數(shù)的數(shù)學(xué)期望.

附:臨界值表

參考公式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,分別是,的中點(diǎn).

(Ⅰ)證明:平面;

(Ⅱ)若這個(gè)三棱柱的底面是邊長為2的等邊三角形,側(cè)面都是正方形,求五面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已如橢圓,四點(diǎn)中恰有三點(diǎn)在橢圓上.

1)求橢圓C的方程;

2)設(shè)不經(jīng)過左焦點(diǎn)的直線交橢圓于A,B兩點(diǎn),若直線、、的斜率依次成等差數(shù)列,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了加強(qiáng)環(huán)保建設(shè),提高社會(huì)效益和經(jīng)濟(jì)效益,某市計(jì)劃用若干年時(shí)間更換一萬輛燃油型公交車.每更換一輛新車,則淘汰一輛舊車,更換的新車為電力型車和混合動(dòng)力型車.今年初投入了電力型公交車120輛,混合動(dòng)力型公交車300輛,計(jì)劃以后電力型車每年的投入量比上一年增加,混合動(dòng)力型車每年比上一年多投入.設(shè)分別為第年投入的電力型公交車,混合動(dòng)力型公交車的數(shù)量,設(shè)分別為年里投入的電力型公交車,混合動(dòng)力型公交車的總數(shù)量.

1)求,并求年里投入的所有新公交車的總數(shù);

2)該市計(jì)劃用8年的時(shí)間完成全部更換,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】產(chǎn)能利用率是指實(shí)際產(chǎn)出與生產(chǎn)能力的比率,工r產(chǎn)能利用率是衡量工業(yè)生產(chǎn)經(jīng)營狀況的重要指標(biāo).下圖為國家統(tǒng)計(jì)局發(fā)布的2015年至2018年第2季度我國工業(yè)產(chǎn)能利用率的折線圖.

在統(tǒng)計(jì)學(xué)中,同比是指本期統(tǒng)計(jì)數(shù)據(jù)與上一年同期統(tǒng)計(jì)數(shù)據(jù)相比較,例如2016年第二季度與2015年第二季度相比較;環(huán)比是指本期統(tǒng)計(jì)數(shù)據(jù)與上期統(tǒng)計(jì)數(shù)據(jù)相比較,例如2015年第二季度與2015年第一季度相比較.

據(jù)上述信息,下列結(jié)論中正確的是( ).

A. 2015年第三季度環(huán)比有所提高B. 2016年第一季度同比有所提高

C. 2017年第三季度同比有所提高D. 2018年第一季度環(huán)比有所提高

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某手機(jī)廠商在銷售某型號(hào)手機(jī)時(shí)開展手機(jī)碎屏險(xiǎn)活動(dòng).用戶購買該型號(hào)手機(jī)時(shí)可選購手機(jī)碎屏險(xiǎn),保費(fèi)為元,若在購機(jī)后一年內(nèi)發(fā)生碎屏可免費(fèi)更換一次屏幕,為了合理確定保費(fèi)的值,該手機(jī)廠商進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)后得到下表(其中表示保費(fèi)為元時(shí)愿意購買該手機(jī)碎屏險(xiǎn)的用戶比例):

1)根據(jù)上面的數(shù)據(jù)計(jì)算得,求出關(guān)于的線性回歸方程;

2)若愿意購買該手機(jī)碎屏險(xiǎn)的用戶比例超過,則手機(jī)廠商可以獲利,現(xiàn)從表格中的種保費(fèi)任取種,求這種保費(fèi)至少有一種能使廠商獲利的概率.

附:回歸方程中斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

同步練習(xí)冊(cè)答案