(2012•貴陽(yáng)模擬)若函數(shù)f(x)定義域?yàn)镽,滿足對(duì)任意x1,x2∈R,有f(x1+x2)≤f(x1)+f(x2),則稱(chēng)f(x)為“V形函數(shù)”;若函數(shù)g(x)定義域?yàn)镽,g(x)恒大于0,且對(duì)任意x1,x2∈R,有l(wèi)gg(x1+x2)≤lgg(x1)+lgg(x2),則稱(chēng)g(x)為“對(duì)數(shù)V形函數(shù)”.
(1)當(dāng)f(x)=x2時(shí),判斷f(x)是否為V形函數(shù),并說(shuō)明理由;
(2)當(dāng)g(x)=x2+2時(shí),證明:g(x)是對(duì)數(shù)V形函數(shù);
(3)若f(x)是V形函數(shù),且滿足對(duì)任意x∈R,有f(x)≥2,問(wèn)f(x)是否為對(duì)數(shù)V形函數(shù)?證明你的結(jié)論.
分析:(1)由f(x1+x2)-[f(x1)+f(x2)]=(x1+x22-(x12+x22)=2x1x2,可得2x1x2符號(hào)不定,從而可得結(jié)論;
(2)利用反證法證明.假設(shè)對(duì)任意x1,x2∈R,有l(wèi)gg(x1+x2)≤lgg(x1)+lgg(x2),則可得(x1+x22+2≤(x12+2)(x22+2),即證x12x22+(x1-x22+2≥0,顯然成立;
(3)f(x)是對(duì)數(shù)V形函數(shù),根據(jù)f(x)是V形函數(shù),利用對(duì)任意x∈R,有f(x)≥2,證明f(x1+x2)≤f(x1)f(x2),從而可得f(x)是對(duì)數(shù)V形函數(shù).
解答:(1)解:f(x1+x2)-[f(x1)+f(x2)]=(x1+x22-(x12+x22)=2x1x2
∵x1,x2∈R,∴2x1x2符號(hào)不定,∴當(dāng)2x1x2≤0時(shí),f(x)是V形函數(shù);當(dāng)2x1x2>0時(shí),f(x)不是V形函數(shù);
(2)證明:假設(shè)對(duì)任意x1,x2∈R,有l(wèi)gg(x1+x2)≤lgg(x1)+lgg(x2),
則lgg(x1+x2)-lgg(x1)-lgg(x2)=lg[(x1+x22+2]-lg(x12+2)-lg(x22+2)≤0,
∴(x1+x22+2≤(x12+2)(x22+2),
∴x12x22+(x1-x22+2≥0,顯然成立,
∴假設(shè)正確,g(x)是對(duì)數(shù)V形函數(shù);
(3)解:f(x)是對(duì)數(shù)V形函數(shù)
證明:∵f(x)是V形函數(shù),∴對(duì)任意x1,x2∈R,有f(x1+x2)≤f(x1)+f(x2),
∵對(duì)任意x∈R,有f(x)≥2,∴
1
f(x1)
+
1
f(x2)
≤1,∴0<f(x1)+f(x2)≤f(x1)f(x2),
∴f(x1+x2)≤f(x1)f(x2),
∴l(xiāng)gf(x1+x2)≤lgf(x1)+lgf(x2),
∴f(x)是對(duì)數(shù)V形函數(shù).
點(diǎn)評(píng):本題考查新定義,考查學(xué)生分析解決問(wèn)題的能力,解題的關(guān)鍵是正確理解新定義.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•貴陽(yáng)模擬)若對(duì)于任意實(shí)數(shù)x,都有x4=a0+a1(x+2)+a2(x+2)2+a3(x+2)3+a4(x+2)4,則a3的值為
-8
-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•貴陽(yáng)模擬)直線x-2y+1=0關(guān)于直線x=3對(duì)稱(chēng)的直線方程為
x+2y-7=0
x+2y-7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•貴陽(yáng)模擬)如圖所示,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=1,BC=2,CC1=5,M為棱CC1上一點(diǎn).
(1)若C1M=
32
,求異面直線A1M和C1D1所成角的正切值;
(2)是否存在這樣的點(diǎn)M使得BM⊥平面A1B1M?若存在,求出C1M的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•貴陽(yáng)模擬)若實(shí)數(shù)a、b、m滿足2a=5b=m,且
2
a
+
1
b
=2
,則m的值為
2
5
2
5

查看答案和解析>>

同步練習(xí)冊(cè)答案