(2013•廣州一模)已知經(jīng)過(guò)同一點(diǎn)的n(n∈N*,n≥3)個(gè)平面,任意三個(gè)平面不經(jīng)過(guò)同一條直線.若這n個(gè)平面將空間分成f(n)個(gè)部分,則f(3)=
8
8
,f(n)=
n2-n+2
n2-n+2
分析:兩個(gè)平面把空間分成4個(gè)部分,增加一平面,與前兩個(gè)平面不過(guò)同一直線,則第三個(gè)平面與前兩個(gè)平面有兩條交線,兩條交線把第三個(gè)平面分成兩個(gè)部分,每一部分將其所在的空間一分為二,則三個(gè)平面把空間分成8個(gè)部分,即f(3)=8=32-3+2;類(lèi)比此結(jié)論可得過(guò)同一點(diǎn)且不經(jīng)過(guò)同一直線的n個(gè)平面把空間分成n2-n+2個(gè)部分.
解答:解:因?yàn)閮蓚(gè)相交平面把空間分成四個(gè)部分,若第三個(gè)平面和前兩相交平面經(jīng)過(guò)同一點(diǎn),且三個(gè)平面不過(guò)同一直線,則第三個(gè)平面與前兩個(gè)平面的交線相交,這樣能把空間分成8個(gè)部分,即f(3)=8=32-3+2;
有n個(gè)面時(shí),再添加1個(gè)面,與其它的n個(gè)面有n條交線,n條交線將此平面分成2n個(gè)部分,
每一部分將其所在空間一分為二,
則 f(n+1)=f(n)+2n.
利用疊加法,
則 f(n)-f(1)=[2+4+6+…+2(n-1)]
=
[2+2(n-1)](n-1)
2
=n2-n

∴f(n)=n2-n+2.
故答案為8,n2-n+2.
點(diǎn)評(píng):本題考查了類(lèi)比推理,類(lèi)比推理是根據(jù)已有的事實(shí),經(jīng)過(guò)觀察、分析、比較、聯(lián)想,再進(jìn)行歸納、類(lèi)比,然后提出猜想的推理,此題是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣州一模)
1
0
cosx
dx=
sin1
sin1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣州一模)函數(shù)f(x)=
2-x
+ln(x-1)
的定義域?yàn)?!--BA-->
(1,2]
(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣州一模)如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,點(diǎn)M為PC的中點(diǎn).
(1)求證:PA∥平面BMD;
(2)求證:AD⊥PB;
(3)若AB=PD=2,求點(diǎn)A到平面BMD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣州一模)已知n∈N*,設(shè)函數(shù)fn(x)=1-x+
x2
2
-
x3
3
+…-
x2n-1
2n-1
,x∈R

(1)求函數(shù)y=f2(x)-kx(k∈R)的單調(diào)區(qū)間;
(2)是否存在整數(shù)t,對(duì)于任意n∈N*,關(guān)于x的方程fn(x)=0在區(qū)間[t,t+1]上有唯一實(shí)數(shù)解?若存在,求t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案