已知
a
=(1,2),
b
=(-1,m),若
a
b
夾角為鈍角,則m的取值范圍是( 。
A、(-
1
2
,+∞)
B、(-∞,-
1
2
C、(
1
2
,+∞)
D、(-∞,-2)∪(-2,
1
2
考點(diǎn):數(shù)量積表示兩個向量的夾角
專題:平面向量及應(yīng)用
分析:由題意可得可得
a
b
<0,且
a
b
不共線,即-1+2m<0,且
1
-1
2
m
.由此求得m的范圍.
解答: 解:根據(jù)
a
=(1,2),
b
=(-1,m),
a
b
夾角為鈍角,
可得
a
b
<0,且
a
和 
b
不共線,即-1+2m<0,且
1
-1
2
m

求得m<
1
2
,且m≠-2,
故選:D.
點(diǎn)評:本題主要考查兩個向量共線的性質(zhì),兩個向量的數(shù)量積公式、用兩個向量的數(shù)量積表示兩個向量的夾角,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個正方體的六個面上分別標(biāo)有字母A、B、C、D、E、F,如圖是此正方體的兩種不同放置,則與D面相對的面上的字母是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}按下列條件給出:a1=2,當(dāng)n為奇數(shù)時,an+1=an+2,當(dāng)n為偶數(shù)時,an+1=2an,則a2004等于(  )
A、3×21001-2
B、3×21002
C、3×21003-2
D、3×21002-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:若數(shù)列{an}對任意的正整數(shù)n,都有|an+1|+|an|=d(d為常數(shù)),則稱{an}為“絕對和數(shù)列”,d叫做“絕對公和”,已知“絕對和數(shù)列”{an}中,a1=2,“絕對公和”d=2,則其前2014項(xiàng)和S2014的最小值為( 。
A、-2010
B、-2009
C、-2006
D、-2011

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,Sn是{an}的前n項(xiàng)和,且S3=30,S6=100,則S9的值為( 。
A、260B、130
C、170D、210

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin2x的圖象向上平移1個單位長度,再向右平移1個單位長度,所得圖象對應(yīng)的函數(shù)解析式是(  )
A、y=2cos2x
B、y=2sin2x
C、y=1+sin2(x-1)
D、y=1+sin2(x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z滿足(z-i)(1-i)=1+i,則z=( 。
A、0B、iC、-iD、2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品的廣告費(fèi)用支出x(萬元)與銷售額y(萬元)之間對應(yīng)數(shù)據(jù)如表:
x24568
y3040605070
根據(jù)表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程為y=6.5x+a,則a=( 。
A、17B、17.5
C、18D、18.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各式中的S值不可以用算法求解的是(  )
A、S=1+2+3+4
B、S=12+22+32+…+1002
C、S=1+
1
2
+…+
1
10000
D、S=1+2+3+…

查看答案和解析>>

同步練習(xí)冊答案