【題目】自點A(-3,3)發(fā)出的光線L射到x軸上,被x軸反射,其反射光線所在直線與圓x2+y2-4x-4y+7=0相切,求光線L所在直線的方程。
【答案】已知圓的標準方程是(x-2)2+(y-2)2=1,它關(guān)于x軸的對稱圓的方程是(x-2)2+(y+2)2=1。設(shè)光線L所在的直線的方程是y-3=k(x+3)(其中斜率k待定),由題設(shè)知對稱圓的圓心C′(2,-2)到這條直線的距離等于1,即d==1。整理得 12k2+25k+12=0,解得k= -或k= -。故所求直線方程是y-3= -(x+3),或y-3= -(x+3),即3x+4y-3=0或4x+3y+3=0。
【解析】試題分析:已知圓關(guān)于軸的對稱圓的方程為
2分
如圖所示.
可設(shè)光線所在直線方程為, 4分
∵直線與圓相切,
∴圓心到直線的距離=, 6分
解得或. 10分
∴光線所在直線的方程為或.…12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知空間四邊形, 分別在上,
(1) 若,異面直線與所成的角的大小為,求和所成的角的大;
(2)當(dāng)四邊形是平面四邊形時,試判斷與三條直線的位置關(guān)系,并選擇其中一種位置關(guān)系說明理由;
(3)已知當(dāng),異面直線所成角為,當(dāng)四邊形是平行四邊形時,試判斷點在什么位置時,四邊形的面積最大,試求出最大面積并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c, =( ,1), =(sinA,cosA), 與 的夾角為60°. (Ⅰ)求角A的大。
(Ⅱ)若sin(B﹣C)=2cosBsinC,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 有一個面是多邊形,其余各面都是三角形,由這些面圍成的幾何體是棱錐
B. 有兩個面平行且相似,其余各面都是梯形的多面體是棱臺
C. 如果一個棱錐的各個側(cè)面都是等邊三角形,那么這個棱錐可能為六棱錐
D. 有兩個相鄰側(cè)面是矩形的棱柱是直棱柱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}為等差數(shù)列,且a3=﹣6,a6=0.
(1)求{an}的通項公式.
(2)若等比數(shù)列{bn}滿足b1=8,b2=a1+a2+a3 , 求{bn}的前n項和公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn=3n﹣1.
(1)求a1 , a2 , a3的值;
(2)求數(shù)列{an}的通項公式;
(3)求數(shù)列{nan}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線與曲線的公共點的橫坐標之和為3,求的值;
(2)當(dāng)時,對任意,使恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是公差不為零的等差數(shù)列,且成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com