“中國(guó)式過(guò)馬路”存在很大的交通安全隱患.某調(diào)
查機(jī)構(gòu)為了解路人對(duì)“中國(guó)式過(guò)馬路”的態(tài)度是否與性別有關(guān),從馬路旁隨機(jī)抽取30名路
人進(jìn)行了問(wèn)卷調(diào)查,得到了如下列聯(lián)表:

 
男性
女性
合計(jì)
反感
10
 
 
不反感
 
8
 
合計(jì)
 
 
30
已知在這30人中隨機(jī)抽取1人抽到反感“中國(guó)式過(guò)馬路”的路人的概率是.
(Ⅰ)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過(guò)程),并據(jù)此資料分析反感“中國(guó)式過(guò)馬路”與性別是否有關(guān)?
(Ⅱ)若從這30人中的女性路人中隨機(jī)抽取2人參加一活動(dòng),記反感“中國(guó)式過(guò)馬路”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

(Ⅰ)

 
男性
女性
合計(jì)
反感
10
6
16
不反感
6
8
14
合計(jì)
16
14
30
沒(méi)有充足的理由認(rèn)為反感“中國(guó)式過(guò)馬路”與性別有關(guān).
(Ⅱ)

0
1
2




的數(shù)學(xué)期望為:

解析試題分析:(Ⅰ)

 
男性
女性
合計(jì)
反感
10
6
16
不反感
6
8
14
合計(jì)
16
14
30
3分
由已知數(shù)據(jù)得:,
所以,沒(méi)有充足的理由認(rèn)為反感“中國(guó)式過(guò)馬路”與性別有關(guān).   6分
(Ⅱ)的可能取值為
 
                                 9分
所以的分布列為:

0
1
2




的數(shù)學(xué)期望為:       12分
考點(diǎn):列聯(lián)表;獨(dú)立檢驗(yàn);隨機(jī)事件的概率;分布列;數(shù)學(xué)期望。
點(diǎn)評(píng):分布列的求解應(yīng)注意以下幾點(diǎn):(1)弄清隨機(jī)變量每個(gè)取值對(duì)應(yīng)的隨機(jī)事件;(2)計(jì)算必須準(zhǔn)確無(wú)誤;(3)注意用分布列的兩條性質(zhì)檢驗(yàn)所求的分布列是否正確。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某單位實(shí)行休年假制度三年來(lái),名職工休年假的次數(shù)進(jìn)行的調(diào)查統(tǒng)計(jì)結(jié)果如下表所示:

休假次數(shù)




人數(shù)




根據(jù)上表信息解答以下問(wèn)題:
⑴從該單位任選兩名職工,用表示這兩人休年假次數(shù)之和,記“函數(shù),在區(qū)間上有且只有一個(gè)零點(diǎn)”為事件,求事件發(fā)生的概率;
⑵從該單位任選兩名職工,用表示這兩人休年假次數(shù)之差的絕對(duì)值,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中國(guó)航母“遼寧艦”是中國(guó)第一艘航母,“遼寧”號(hào)以4臺(tái)蒸汽輪機(jī)為動(dòng)力,為保證航母的動(dòng)力安全性,科學(xué)家對(duì)蒸汽輪機(jī)進(jìn)行了170余項(xiàng)技術(shù)改進(jìn),增加了某項(xiàng)新技術(shù),該項(xiàng)新技術(shù)要進(jìn)入試用階段前必須對(duì)其中的三項(xiàng)不同指標(biāo)甲、乙、丙進(jìn)行通過(guò)量化檢測(cè).假如該項(xiàng)新技術(shù)的指標(biāo)甲、乙、丙獨(dú)立通過(guò)檢測(cè)合格的概率分別為、.指標(biāo)甲、乙、丙合格分別記為4分、2分、4分;若某項(xiàng)指標(biāo)不合格,則該項(xiàng)指標(biāo)記0分,各項(xiàng)指標(biāo)檢測(cè)結(jié)果互不影響.
(I)求該項(xiàng)技術(shù)量化得分不低于8分的概率;
(II)記該項(xiàng)新技術(shù)的三個(gè)指標(biāo)中被檢測(cè)合格的指標(biāo)個(gè)數(shù)為隨機(jī)變量X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某醫(yī)院將一專家門診已診的1000例病人的病情及診斷所用時(shí)間(單位:分鐘)進(jìn)行了統(tǒng)計(jì),如下表.若視頻率為概率,請(qǐng)用有關(guān)知識(shí)解決下列問(wèn)題.

病癥及代號(hào)
普通病癥
復(fù)診病癥
常見(jiàn)病癥
疑難病癥
特殊病癥
人數(shù)
100
300
200
300
100
每人就診時(shí)間(單位:分鐘)
3
4
5
6
7
表示某病人診斷所需時(shí)間,求的數(shù)學(xué)期望.
并以此估計(jì)專家一上午(按3小時(shí)計(jì)算)可診斷多少病人;
某病人按序號(hào)排在第三號(hào)就診,設(shè)他等待的時(shí)間為,求;
求專家診斷完三個(gè)病人恰好用了一刻鐘的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某食品加工廠甲,乙兩個(gè)車間包裝小食品,在自動(dòng)包裝傳送帶上每隔30分鐘抽取一袋食品,稱其重量并將數(shù)據(jù)記錄如下:
甲:102  100  98  97  103  101  99
乙: 102  101  99  98  103  98   99
(1)食品廠采用的是什么抽樣方法(不必說(shuō)明理由)?
(2)根據(jù)數(shù)據(jù)估計(jì)這兩個(gè)車間所包裝產(chǎn)品每袋的平均質(zhì)量;
(3)分析哪個(gè)車間的技術(shù)水平更好些?
附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一汽車廠生產(chǎn)A,B,C三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號(hào),某月的產(chǎn)量如下表(單位:輛):

 
轎車A
轎車B
轎車C
舒適型
100
150
z
標(biāo)準(zhǔn)型
300
450
600
按類型分層抽樣的方法在這個(gè)月生產(chǎn)的轎車中抽取50輛,其中有A類轎車10輛. (1)求z的值
(2)用分層抽樣的方法在C類轎車中抽取一個(gè)容量為5的樣本.從這5輛車中任取2輛,求至少有1輛舒適型轎車的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某班有6名班干部,其中男生4人,女生2人,任選選3人參加學(xué)校的義務(wù)勞動(dòng)。
(1)求男生甲或女生乙被選中的概率
(2)設(shè)“男生甲被選中”為事件A,“女生乙被選中”為事件B,求P(A)和P(B︱A)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為豐富高三學(xué)生的課余生活,提升班級(jí)的凝聚力,某校高三年級(jí)6個(gè)班(含甲、乙)舉行唱歌比賽.比賽通過(guò)隨機(jī)抽簽方式?jīng)Q定出場(chǎng)順序.
求:(1)甲、乙兩班恰好在前兩位出場(chǎng)的概率;
(2)比賽中甲、乙兩班之間的班級(jí)數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)甲、乙、丙三人進(jìn)行圍棋比賽,每局兩人參加,沒(méi)有平局。在一局比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為。比賽順序?yàn)椋菏紫扔杉缀鸵疫M(jìn)行第一局的比賽,再由獲勝者與未參加比賽的選手進(jìn)行第二局的比賽,依此類推,在比賽中,有選手獲勝滿兩局就取得比賽的勝利,比賽結(jié)束。
(1)求只進(jìn)行了三局比賽,比賽就結(jié)束的概率;
(2)記從比賽開(kāi)始到比賽結(jié)束所需比賽的局?jǐn)?shù)為,求的概率分布列和數(shù)學(xué)期望。

查看答案和解析>>

同步練習(xí)冊(cè)答案