【題目】已知函數(shù).
(1)若在是單調(diào)函數(shù),求的值;
(2)若對,恒成立,求的取值范圍.
【答案】(1);(2).
【解析】
(1)求出函數(shù)的導(dǎo)數(shù),并求出方程的兩根,,然后分、、三種情況討論,分析在區(qū)間的符號,結(jié)合題意可得出實數(shù)的值;
(2)分、、和四種情況討論,分析函數(shù)在區(qū)間上的單調(diào)性,得出在上恒成立的等價條件為,然后在平面直角坐標系內(nèi)作出可行域,利用平移直線的方法求出的取值范圍.
(1),,
令,解得,.
①當時,,函數(shù)在上單調(diào)遞增,在上也單調(diào)遞增;
②當時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,
則函數(shù)在上不是單調(diào)函數(shù),不符合題目要求;
③當時,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
則函數(shù)在上不是單調(diào)函數(shù),不符合題目要求;
綜上所述,;
(2)以導(dǎo)函數(shù)的兩個零點為界點討論:
①當時,在上單調(diào)遞增,在上恒成立;
②當時,,函數(shù)在上單調(diào)遞減.在上單調(diào)遞增,在上恒成立;
③當時,,函數(shù)在上單調(diào)遞增,
則函數(shù)在上單調(diào)遞減,在上恒成立;
④當時,函數(shù)在上單調(diào)遞增,
則函數(shù)在上單調(diào)遞增,在上恒成立;
綜合①②③④,在上恒成立.
在平面直角坐標系中作出不等式組表示的平面區(qū)域(可行域)如下圖:
設(shè),
則,當直線經(jīng)過點時,截距最大,此時最大值,由解得最優(yōu)解,則.
當直線向軸負方向無限平移時,截距,此時.
所以,的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,橢圓:的離心率為,圓上任意一點處的切線交橢圓于兩點,,當恰好位于軸上時,的面積為.
(1)求橢圓的方程;
(2)試判斷是否為定值?若為定值,求出該定值;若不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形為直角梯形,,,,,為中點,,與交于點,沿將四邊形折起,連接.
(1)求證:平面;
(2)若平面平面.
(I)求二面角的平面角的大。
(II)線段上是否存在點,使平面,若存在,求出的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中學(xué)校決定開展“數(shù)學(xué)知識競賽”活動。各班級都進行了選拔,高三一班全體同學(xué)都參加了考試,將他們的分數(shù)進行統(tǒng)計,并作出如右圖的頻率分布直方圖和分數(shù)的莖葉圖(其中,莖葉圖中僅列出了得分在的數(shù)據(jù))
(1)求高三一班學(xué)生的總數(shù)和頻率分布直方圖中a、b的值;
(2)在高三一班學(xué)生中,從競賽成績在80分以上(含80分)的學(xué)生中隨機抽取2名學(xué)生參加學(xué)校“數(shù)學(xué)知識競賽”,求所抽取的2名學(xué)生中至少有一人得分在[90,100]內(nèi)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),、、,且都有,滿足的實數(shù)有且只有個,給出下述四個結(jié)論:
①滿足題目條件的實數(shù)有且只有個;②滿足題目條件的實數(shù)有且只有個;
③在上單調(diào)遞增;④的取值范圍是.
其中所有正確結(jié)論的編號是( )
A.①④B.②③C.①②③D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義域為,若滿足條件:存在,使在上的值域為,則稱為“倍縮函數(shù)”.若函數(shù)為“倍縮函數(shù)”,則實數(shù)的取值范圍是
A. (﹣∞,ln2﹣1) B. (﹣∞,ln2﹣1]
C. (1﹣ln2,+∞) D. [1﹣ln2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠家舉行大型的促銷活動,經(jīng)測算某產(chǎn)品當促銷費用為萬元時,銷售量萬件滿足(其中, 為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品萬件還需投入成本萬元(不含促銷費用),產(chǎn)品的銷售價格定為萬元/萬件.
(1)將該產(chǎn)品的利潤萬元表示為促銷費用萬元的函數(shù);
(2)促銷費用投入多少萬元時,廠家的利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐 中,底面 是邊長為 2 的正三角形,頂點 在底面上的射影為的中心,若為的中點,且直線與底面所成角的正切值為,則三棱錐外接球的表面積為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com