B.已知矩陣M=
12
2x
的一個(gè)特征值為3,求另一個(gè)特征值及其對應(yīng)的一個(gè)特征向量.
C.在極坐標(biāo)系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.
分析:B.先根據(jù)特征多項(xiàng)式的公式建立方程,由λ1=3代入f(λ)=0解出x=1,進(jìn)而得出另一個(gè)特征值λ2,最后由得到的λ2值不難求出另一個(gè)特征向量;
C.由直線參數(shù)方程消去參數(shù)t化簡為一般方程,再將⊙C化成直角坐標(biāo)的標(biāo)準(zhǔn)方程,求出圓心C到直線l的距離,再將這個(gè)距離與⊙C半徑比較,即可得到直線l和圓C的位置關(guān)系.
解答:解:B.矩陣M的特征多項(xiàng)式為f(λ)=|
λ-1
,-2
-2
,λ-x
|=(λ-1)(λ-x)-4…(1分)
因?yàn)棣?SUB>1=3方程f(λ)=0的一根,所以x=1…(3分)
由(λ-1)(λ-1)-4=0得λ2=-1,…(5分)
設(shè)λ2=-1對應(yīng)的一個(gè)特征向量為α=
x
y
,
-2x-2y=0
-2x-2y=0
得x=-y…(8分)
令x=1,則y=-1,
所以矩陣M的另一個(gè)特征值為-1,對應(yīng)的一個(gè)特征向量為α=
1
-1
…(10分)
C.直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),
消去參數(shù)t,得直線l的直角坐標(biāo)方程為y=2x+1,即2x-y+1=0;…(2分)
ρ=2
2
(sinθ+
π
4
)
即ρ=2(sinθ+cosθ),兩邊同乘以ρ得ρ2=2(ρsinθ+ρcosθ),
得⊙C的直角坐標(biāo)方程為:(x-1)2+(x-1)2=2,…(6分)
圓心C到直線l的距離d=
|2-1+1|
22+12
=
2
5
5
2
,
所以直線l和⊙C相交.…(10分)
點(diǎn)評:本題第一問以求矩陣的特征向量和特征值為例,考查學(xué)生對矩陣變換的理解和特征值與特征向量的計(jì)算等知識,第二問給出直線與圓的參數(shù)方程,求直線與圓的位置關(guān)系,著重考查了參數(shù)方程與普通方程的互化和直線與圓位置關(guān)系等知識,兩題都屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選做題在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.
A選修4-1:幾何證明選講
如圖,延長⊙O的半徑OA到B,使OA=AB,DE是圓的一條切線,E是切點(diǎn),過點(diǎn)B作DE的垂線,垂足為點(diǎn)C.
求證:∠ACB=
1
3
∠OAC.
B選修4-2:矩陣與變換
已知矩陣A=
.
11
21
.
,向量
β
=
1
2
.求向量
a
,使得A2
a
=
β

C選修4-3:坐標(biāo)系與參數(shù)方程
已知橢圓C的極坐標(biāo)方程為ρ2=
a
3cos2θ+4sin2θ
,焦距為2,求實(shí)數(shù)a的值.
D選修4-4:不等式選講
已知函數(shù)f(x)=(x-a)2+(x-b)2+(x-c)2+
(a+b+c)2
3
(a,b.c為實(shí)數(shù))的最小值為m,若a-b+2c=3,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題共有(1)、(2)、(3)三個(gè)選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
變換T1是逆時(shí)針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對應(yīng)的變換矩陣為M1,變換T2對應(yīng)的變換矩陣是M2=
11
01
;
(I)求點(diǎn)P(2,1)在T1作用下的點(diǎn)Q的坐標(biāo);
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標(biāo)系與參數(shù)方程
從極點(diǎn)O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點(diǎn)P,使得OM•OP=12.
(Ⅰ)求動點(diǎn)P的極坐標(biāo)方程;
(Ⅱ)設(shè)R為l上的任意一點(diǎn),試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對一切實(shí)數(shù)x恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三題中任選兩題作答
(1)(2011年江蘇高考)已知矩陣A=
11
21
,向量β=
1
2
,求向量α,使得A2α=β
(2)(2011年山西六校?迹┮灾苯亲鴺(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(4,
π
2
)
,若直線l過點(diǎn)P,且傾斜角為
π
3
,圓C以M為圓心、4為半徑.
①求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;  ②試判定直線l和圓C的位置關(guān)系.
(3)若正數(shù)a,b,c滿足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二階矩陣M=(
a1
0b
)有特征值λ1=2及對應(yīng)的一個(gè)特征向量
e
1
=
1
1

(Ⅰ)求矩陣M;
(II)若
a
=
2
1
,求M10
a

(2)已知直線l:
x=1+
1
2
t
y=
3
2
t
(t為參數(shù)),曲線C1
x=cosθ
y=sinθ
  (θ為參數(shù)).
(Ⅰ)設(shè)l與C1相交于A,B兩點(diǎn),求|AB|;
(Ⅱ)若把曲線C1上各點(diǎn)的橫坐標(biāo)壓縮為原來的
1
2
倍,縱坐標(biāo)壓縮為原來的
3
2
倍,得到曲線C2C,設(shè)點(diǎn)P是曲線C2上的一個(gè)動點(diǎn),求它到直線l的距離的最小值.
(3)已知函數(shù)f(x)=log2(|x+1|+|x-2|-m).
(Ⅰ)當(dāng)m=5時(shí),求函數(shù)f(x)的定義域;
(Ⅱ)若關(guān)于x的不等式f(x)≥1的解集是R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

三題中任選兩題作答
(1)(2011年江蘇高考)已知矩陣A=
11
21
,向量β=
1
2
,求向量α,使得A2α=β
(2)(2011年山西六校?迹┮灾苯亲鴺(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(4,
π
2
)
,若直線l過點(diǎn)P,且傾斜角為
π
3
,圓C以M為圓心、4為半徑.
①求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;  ②試判定直線l和圓C的位置關(guān)系.
(3)若正數(shù)a,b,c滿足a+b+c=1,求
1
3a+2
+
1
3b+2
+
1
3c+2
的最小值.

查看答案和解析>>

同步練習(xí)冊答案