在平面直角坐標(biāo)系中,已知焦距為4的橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
左、右頂點(diǎn)分別為A、B,橢圓C的右焦點(diǎn)為F,
過F作一條垂直于x軸的直線與橢圓相交于R、S,若線段RS的長(zhǎng)為
10
3

(1)求橢圓C的方程;
(2)設(shè)Q(t,m)是直線x=9上的點(diǎn),直線QA、QB與橢圓C分別交于點(diǎn)M、N,求證:直線MN必過x軸上的一定點(diǎn),并求出此定點(diǎn)的坐標(biāo).
(1)依題意,橢圓過點(diǎn)(2,
5
3
)

4
a2
+
25
9b2
=1
a2-b2=4
,
解得
a2=9
b2=5
.…(3分)
橢圓C的方程為
x2
9
+
y2
5
=1
.…(4分)
(2)設(shè)Q(9,m),直線QA的方程為y=
m
12
(x+3)
,…(5分)
代入橢圓方程,得(80+m2)x2+6x+9m2-720=0,…(6分)
設(shè)M(x1,y1),則-3x1=
9m2-720
m2+80
x1=
240-3m2
m2+80
,…(7分)
y1=
m
12
(x1+3)=
m
12
(
240-3m2
m2+80
+3)=
40m
m2+80
,
故點(diǎn)M的坐標(biāo)為(
240-3m2
m2+80
,
40m
m2+80
)
.…(8分)
同理,直線QB的方程為y=
m
6
(x-3)
,
代入橢圓方程,得(20+m2)x2-6x+9m2-180=0,
設(shè)N(x2,y2),
3x2=
9m2-180
m2+20
x2=
3m2-60
m2+20
,
y2=
m
6
(x2-3)=
m
6
(
3m2-60
m2+20
-3)=-
20m
m2+20

得點(diǎn)N的坐標(biāo)為(
3m2-60
m2+20
,-
20m
m2+20
)
.…(10分)
①若
240-3m2
m2+80
=
3m2-60
m2+20
m2=40
時(shí),
直線MN的方程為x=1,與x軸交于(1,0)點(diǎn);
②若m2≠40,直線MN的方程為y+
20m
m2+20
=
10m
40-m2
(x-
3m2-60
m2+20
)
,
令y=0,解得x=1.
綜上所述,直線MN必過x軸上的定點(diǎn)(1,0).…(12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,P是拋物線C:x2=2y上一點(diǎn),F(xiàn)為拋物線的焦點(diǎn),直線l過點(diǎn)P且與拋物線交于另一點(diǎn)Q,已知P(x1,y1),Q(x2,y2).
(1)若l經(jīng)過點(diǎn)F,求弦長(zhǎng)|PQ|的最小值;
(2)設(shè)直線l:y=kx+b(k≠0,b≠0)與x軸交于點(diǎn)S,與y軸交于點(diǎn)T
①求證:
|ST|
|SP|
+
|ST|
|SQ|
=|b|(
1
y1
+
1
y2
)

②求
|ST|
|SP|
+
|ST|
|SQ|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距為2
5
,且過點(diǎn)(-3,2),⊙O的圓心為原點(diǎn),直徑為橢圓的短軸,⊙M的方程為(x-8)2+(y-6)2=4,過⊙M上任一點(diǎn)P作⊙O的切線PA、PB,切點(diǎn)為A、B.
(1)求橢圓的方程;
(2)若直線PA與⊙M的另一交點(diǎn)為Q,當(dāng)弦PQ最大時(shí),求直線PA的直線方程;
(3)求
OA
OB
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點(diǎn)A是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右頂點(diǎn),若點(diǎn)C(
3
2
3
2
)
在橢圓上,且滿足
OC
OA
=
3
2
.(其中O為坐標(biāo)原點(diǎn))
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l與橢圓交于兩點(diǎn)M,N,當(dāng)
OM
+
ON
=m
OC
,m∈(0,2)
時(shí),求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線與橢圓
x2
4
+y2=1
共焦點(diǎn),它們的離心率之和為
3
3
2
;
(1)求橢圓與雙曲線的離心率e1、e2;
(2)求雙曲線的標(biāo)準(zhǔn)方程與漸近線方程;
(3)已知直線l:y=
1
2
x+m
與橢圓有兩個(gè)交點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線x-y+1=0經(jīng)過橢圓S:
x2
a2
+
y2
b2
=1(a>b>0)
的一個(gè)焦點(diǎn)和一個(gè)頂點(diǎn).
(1)求橢圓S的方程;
(2)如圖,M,N分別是橢圓S的頂點(diǎn),過坐標(biāo)原點(diǎn)的直線交橢圓于P、A兩點(diǎn),其中P在第一象限,過P作x軸的垂線,垂足為C,連接AC,并延長(zhǎng)交橢圓于點(diǎn)B,設(shè)直線PA的斜率為k.
①若直線PA平分線段MN,求k的值;
②對(duì)任意k>0,求證:PA⊥PB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
16
+
y2
12
=1,點(diǎn)P為其上一點(diǎn),F(xiàn)1、F2為橢圓的焦點(diǎn),Q為射線F1P延長(zhǎng)線上一點(diǎn),且|PQ|=|PF2|,設(shè)R為F2Q的中點(diǎn).
(1)當(dāng)P點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),求R形成的軌跡方程;
(2)設(shè)點(diǎn)R形成的曲線為C,直線l:y=k(x+4
2
)與曲線C相交于A、B兩點(diǎn),若∠AOB=90°時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C過定點(diǎn)F(-
1
4
,0),且與直線x=
1
4
相切,圓心C的軌跡為E,曲線E與直線l:y=k(x+1)(k∈R)相交于A、B兩點(diǎn).
(I)求曲線E的方程;
(II)當(dāng)△OAB的面積等于
10
時(shí),求k的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的兩條漸近線方程為直線l1:y=-
x
2
l2:y=
x
2
,焦點(diǎn)在y軸上,實(shí)軸長(zhǎng)為2
3
,O為坐標(biāo)原點(diǎn).
(1)求雙曲線方程;
(2)設(shè)P1,P2分別是直線l1和l2上的點(diǎn),點(diǎn)M在雙曲線上,且
P1M
=2
MP2
,求三角形P1OP2的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案