某市一家庭今年一月份、二月份、和三月份煤氣用量和支付費(fèi)用如下表所示:

月份
用氣量(立方米)
煤氣費(fèi)(元)
1
4
4.00
2
25
14.00
3
35
19.00
(該市煤氣收費(fèi)的方法是:煤氣費(fèi)=基本費(fèi)+超額費(fèi)+保險(xiǎn)費(fèi))
若每月用氣量不超過最低額度立方米時(shí),只付基本費(fèi)3元+每戶每月定額保險(xiǎn)費(fèi)元;若用氣量超過立方米時(shí),超過部分每立方米付元.
⑴根據(jù)上面的表格求、、的值;
⑵若用戶第四月份用氣30立方米,則應(yīng)交煤氣費(fèi)多少元?

(Ⅰ);(Ⅱ)16.5元

解析試題分析:某些實(shí)際問題的函數(shù)解析式常用分段函數(shù)表示,須針對自變量的分段變化情況,列出各段不同的解析式,再依據(jù)自變量的代不同的解析式.
試題解析:(1)設(shè)每月用氣量為立方米,支付費(fèi)用為元,
根據(jù)題意得                 4分
由題設(shè)知,
從表格中可以看出第二、三月份的費(fèi)用均大于8元,
故用氣量25立方米、35立方米均應(yīng)大于最低額A立方米,            6分
從而將代入(1)、(2)得         8分
解得                                 9分
(2)由(1)得                           11分
代入,得∴四月份煤氣費(fèi)應(yīng)付16.5元.         12分
考點(diǎn):分段函數(shù)在實(shí)際問題中的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時(shí))是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過40輛/千米時(shí),車流速度為80千米/小時(shí).研究表明:當(dāng)時(shí),車流速度是車流密度的一次函數(shù).(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(2)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位: 輛/小時(shí))f ,可以達(dá)到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了降低能損耗,最近上海對新建住宅的屋頂和外墻都要求建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=(0≤x≤10),若不建隔熱層,每年能消耗費(fèi)用為8萬元.設(shè)f(x)為隔熱層建造費(fèi)用與20年的能消耗費(fèi)用之和.
(1)求k的值及f(x)的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

相關(guān)部門對跳水運(yùn)動(dòng)員進(jìn)行達(dá)標(biāo)定級考核,動(dòng)作自選,并規(guī)定完成動(dòng)作成績在八分及以上的定為達(dá)標(biāo),成績在九分及以上的定為一級運(yùn)動(dòng)員. 已知參加此次考核的共有56名運(yùn)動(dòng)員.
(1)考核結(jié)束后,從參加考核的運(yùn)動(dòng)員中隨機(jī)抽取了8人,發(fā)現(xiàn)這8人中有2人沒有達(dá)標(biāo),有3人為一級運(yùn)動(dòng)員,據(jù)此請估計(jì)此次考核的達(dá)標(biāo)率及被定為一級運(yùn)動(dòng)員的人數(shù);
(2)經(jīng)過考核,決定從其中的A、B、C、D、E五名一級運(yùn)動(dòng)員中任選2名參加跳水比賽(這五位運(yùn)動(dòng)員每位被選中的可能性相同). 寫出所有可能情況,并求運(yùn)動(dòng)員E被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

計(jì)算:
(1);
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)在區(qū)間上有最大值4,最小值1,
(Ⅰ)求的值。
(Ⅱ)設(shè)不等式在區(qū)間上恒成立,求實(shí)數(shù)k的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),,其中實(shí)數(shù)
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)的圖象只有一個(gè)公共點(diǎn)且存在最小值時(shí),記的最小值為,求的值域;
(3)若在區(qū)間內(nèi)均為增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),,其中實(shí)數(shù)
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)的圖象只有一個(gè)公共點(diǎn)且存在最小值時(shí),記的最小值為,求的值域;
(3)若在區(qū)間內(nèi)均為增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/81/1/pisur.png" style="vertical-align:middle;" />的函數(shù)滿足,當(dāng)時(shí),
(1)當(dāng)時(shí),求的解析式;
(2)當(dāng)x∈時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案