【題目】設(shè)函數(shù)
(1)求 極值;
(2)當(dāng) 時, ,求a的取值范圍.

【答案】
(1)解: ,令 ,列表

x

-

0

故當(dāng) 時, 取極小值 ,沒有極大值


(2)解:設(shè) ,

從而當(dāng) 時,由(Ⅰ)知, 在R單調(diào)遞增,于是當(dāng) 時,

當(dāng) 時,若 ,則 , 單調(diào)遞減,所以當(dāng) 時,則

綜合得 的取值范圍為


【解析】(1)求出原函數(shù)的導(dǎo)函數(shù),令導(dǎo)函數(shù)的值為零得出 x = ln 2 ,列表討論即可求出f(x) 的單調(diào)區(qū)間以及極值的情況。(2)根據(jù)參數(shù)分離轉(zhuǎn)化為不含參數(shù)的函數(shù)的最值問題;對f(x) 分情況討論參數(shù)不同取值下的函數(shù)的單調(diào)性和極值以及最值的情況,最終轉(zhuǎn)化為f(x) min>0,若f(x) <0恒成立,轉(zhuǎn)化為f(x) max>0即可求出結(jié)果。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域為U=(0,+),且滿足條件f(4)=1。對任意的x1x2∈U,有f(x1·x2=fx1+fx2),且當(dāng)x1≠x2時,有>0

(1)求f(1)的值;

(2)如果f(x+6)+f(x)>2,求x的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=ax2+2(a﹣3)x+1在區(qū)間[﹣2,+∞)上遞減,則實數(shù)a的取值范圍是(
A.(﹣∞,0)
B.[﹣3,+∞)
C.[﹣3,0]
D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為增強市民的環(huán)境保護意識,面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機抽取100名按年齡分組:第1組[20,25),第2組[25,30),第3組[30,35),第4組[35,40),第5組[40,45],得到的頻率分布直方圖如圖所示.
(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參廣場的宣傳活動,應(yīng)從第3,4,5組各抽取多少名志愿者?
(2)在(1)的條件下,該市決定在第3,4組的志愿者中隨機抽取2名志愿者介紹宣傳經(jīng)驗,求第4組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,判斷函數(shù)的奇偶性并證明;

(2)討論的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系 中,以原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線 的極坐標(biāo)方程是 ,圓 的極坐標(biāo)方程是
(1)求 交點的極坐標(biāo);
(2)設(shè) 的圓心, 交點連線的中點,已知直線 的參數(shù)方程是 為參數(shù)),求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知α,β是平面,m,n是直線.下列命題中不正確的是 ( )
A.若m∥n,m⊥α,則n⊥α
B.若m∥α,α∩β=n,則m∥n
C.若m⊥α,m⊥β,則α∥β
D.若m⊥α, ,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)
(Ⅰ)當(dāng) 時,討論 的單調(diào)性;
(Ⅱ)設(shè) ,若 恒成立,求 的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中,為常量,且,的圖象經(jīng)過點,

)求的值.

)當(dāng)時,函數(shù)的圖像恒在函數(shù)圖像的上方,求實數(shù)的取值范圍.

)定義在上的一個函數(shù),如果存在一個常數(shù),使得式子對一切大于的自然數(shù)都成立,則稱函數(shù)上的函數(shù)(其中,.試判斷函數(shù)是否為上的函數(shù).若是,則求出的最小值;若不是,則請說明理由.(注:).

查看答案和解析>>

同步練習(xí)冊答案