【題目】已知點(diǎn)是圓上任意一點(diǎn)(是圓心),點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱.線段的中垂線分別與交于兩點(diǎn).
(1)求點(diǎn)的軌跡的方程;
(2)直線經(jīng)過,與拋物線交于兩點(diǎn),與交于兩點(diǎn).當(dāng)以為直徑的圓經(jīng)過時(shí),求.
【答案】(1);(2).
【解析】
試題分析:(1)根據(jù)中垂線的性質(zhì),,這樣,轉(zhuǎn)化為橢圓的定義,根據(jù)定義寫出橢圓方程;(2)設(shè)直線方程,斜率存在時(shí)和橢圓方程聯(lián)立,利用韋達(dá)定理寫出根與系數(shù)的關(guān)系,然后根據(jù)以為直徑的圓經(jīng)過時(shí),有,代入坐標(biāo)關(guān)系,最后根據(jù)直線方程,根據(jù)根與系數(shù)的關(guān)系求,最后代入拋物線的焦點(diǎn)弦長公式.
試題解析:解:(I)由題意得,F(xiàn)1(﹣1,0),F(xiàn)2(1,0),圓F1的半徑為4,且|MF2|=|MP|,
從而|MF1|+|MF2|=|MF1|+|MP|=|PF1|=4>|F1F2|,
∴點(diǎn)M的軌跡是以F1,F(xiàn)2為焦點(diǎn)的橢圓
其中長軸2a=4,得到a=2,焦距2c=2,則短半軸b=,
∴橢圓方程為:
(Ⅱ)當(dāng)直線l 與x軸垂直時(shí),B1(1,),B2(1,﹣),又F1(﹣1,0),
此時(shí),所以以B1B2為直徑的圓不經(jīng)過F1.不滿足條件.
當(dāng)直線l 不與x軸垂直時(shí),設(shè)L:y=k(x﹣1)
由即(3+4k2)x2﹣8k2x+4k2﹣12=0,
因?yàn)榻裹c(diǎn)在橢圓內(nèi)部,所以恒有兩個(gè)交點(diǎn).
設(shè)B1(x1,y1),B2(x2,y2),則:x1+x2=,x1x2=,
因?yàn)橐訠1B2為直徑的圓經(jīng)過F1,所以,又F1(﹣1,0)
所以(﹣1﹣x1)(﹣1﹣x2)+y1y2=0,即(1+k2)x1x2+(1﹣k2)(x1+x2)+1+k2=0
所以解得k2=,
由得k2x2﹣(2k2+4)x+k2=0
因?yàn)橹本l 與拋物線有兩個(gè)交點(diǎn),所以k≠0,
設(shè)A1(x3,y3),A2(x4,y4),則:,x3x4=1
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司過去五個(gè)月的廣告費(fèi)支出與銷售額(單位:萬元)之間有下列對(duì)應(yīng)數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
40 | 60 | 50 | 70 |
工作人員不慎將表格中的第一個(gè)數(shù)據(jù)丟失.已知對(duì)呈線性相關(guān)關(guān)系,且回歸方程為,則下列說法:①銷售額與廣告費(fèi)支出正相關(guān);②丟失的數(shù)據(jù)(表中處)為30;③該公司廣告費(fèi)支出每增加1萬元,銷售額一定增加萬元;④若該公司下月廣告投入8萬元,則銷售
額為70萬元.其中,正確說法有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某班學(xué)生的會(huì)考合格率,要從該班70人中選30人進(jìn)行考察分析,則70人的會(huì)考成績的全體是______,樣本是______,樣本量是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于簡單隨機(jī)抽樣,下列說法正確的是( )
①它要求被抽取樣本的總體的個(gè)體數(shù)有限;
②它是從總體中逐個(gè)進(jìn)行抽取的,在實(shí)踐中操作起來也比較方便;
③它是一種不放回抽樣;
④它是一種等可能抽樣,在整個(gè)抽樣過程中,每個(gè)個(gè)體被抽到的機(jī)會(huì)相等,從而保證了這種抽樣方法的公平性.
A.①②③B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是數(shù)列的前項(xiàng)和,且滿足,等差數(shù)列的前項(xiàng)和為,且, .
(Ⅰ)求數(shù)列與的通項(xiàng)公式;
(Ⅱ)若數(shù)列的通項(xiàng)公式為,問是否存在互不相等的正整數(shù), , 使得, , 成等差數(shù)列,且 , , 成等比數(shù)列?若存在,求出, , ;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在復(fù)平面內(nèi),復(fù)數(shù)3-4i,i(2+i)對(duì)應(yīng)的點(diǎn)分別是A,B,則線段AB的中點(diǎn)C對(duì)應(yīng)的復(fù)數(shù)為( )
A.-2+2iB.2-2i
C.-1+iD.1-i
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市有三所高校,其學(xué)生會(huì)學(xué)習(xí)部有“干事”人數(shù)分別為,現(xiàn)采用分層抽樣的方法從這些“干事”中抽取名進(jìn)行“大學(xué)生學(xué)習(xí)部活動(dòng)現(xiàn)狀”調(diào)查.
(1)求應(yīng)從這三所高校中分別抽取的“干事”人數(shù);
(2)若從抽取的名干事中隨機(jī)選兩名干事,求選出的名干事來自同一所高校的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高一女生共有450人,為了了解高一女生的身高情況,隨機(jī)抽取部分高一女生測量身高,所得數(shù)據(jù)整理后列出頻率分布表如下:
組別 | 頻數(shù) | 頻率 |
145.5~149.5 | 8 | 0.16 |
149.5~153.5 | 6 | 0.12 |
153.5~157.5 | 14 | 0.28 |
157.5~161.5 | 10 | 0.20 |
161.5~165.5 | 8 | 0.16 |
165.5~169.5 | ||
合計(jì) |
(1)求出表中字母所對(duì)應(yīng)的數(shù)值;
(2)在給出的直角坐標(biāo)系中畫出頻率分布直方圖;
(3)估計(jì)該校高一女生身高在149.5~165.5范圍內(nèi)有多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A. 空間不同的三點(diǎn)確定一個(gè)平面
B. 空間兩兩相交的三條直線確定一個(gè)平面
C. 空間有三個(gè)角為直角的四邊形一定是平面圖形
D. 和同一條直線相交的三條平行直線一定在同一平面內(nèi)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com