【題目】以下給出了4個命題:

1)兩個長度相等的向量一定相等;

2)相等的向量起點必相同;

3)若,且,則

4)若向量的模小于的模,則

其中正確命題的個數(shù)共有(

A.3 B.2 C.1 D.0

【答案】D

【解析】

利用向量的概念性質和向量的數(shù)量積對每一個命題逐一分析判斷得解.

1)兩個長度相等的向量不一定相等,因為它們可能方向不同,所以該命題是錯誤的;

2)相等的向量起點不一定相同,只要它們方向相同長度相等就是相等向量,所以該命題是錯誤的;

3)若,且,則是錯誤的,舉一個反例,如,不一定相等,所以該命題是錯誤的;

4)若向量的模小于的模,則,是錯誤的,因為向量不能比較大小,因為向量既有大小又有方向,故該命題不正確.

故選:D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是南北方向的一條公路,是北偏東方向的一條公路,某風景區(qū)的一段邊界為曲線.為方便游客光,擬過曲線上的某點分別修建與公路垂直的兩條道路,,且,的造價分別為5萬元百米,40萬元百米,建立如圖所示的直角坐標系,則曲線符合函數(shù)模型,設,修建兩條道路,的總造價為萬元,題中所涉及的長度單位均為百米.

1)求解析式;

2)當為多少時,總造價最低?并求出最低造價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個大型噴水池的中央有一個強力噴水柱,為了測量噴水柱噴出的水柱的高度,某人在噴水柱正西方向的點A測得水柱頂端的仰角為45°,沿點A向北偏東30°前進100 m到達點B,在B點測得水柱頂端的仰角為30°,則水柱的高度是(  )

A. 50 mB. 100 m

C. 120 mD. 150 m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年初,新冠肺炎疫情襲擊全國,某省由于人員流動性較大,成為湖北省外疫情最嚴重的省份之一,截至229日,該省已累計確診1349例患者(無境外輸入病例).

1)為了解新冠肺炎的相關特征,研究人員從該省隨機抽取100名確診患者,統(tǒng)計他們的年齡數(shù)據(jù),得下面的頻數(shù)分布表:

年齡

人數(shù)

2

6

12

18

22

22

12

4

2

由頻數(shù)分布表可以大致認為,該省新冠肺炎患者的年齡服從正態(tài)分布img src="http://thumb.zyjl.cn/questionBank/Upload/2020/05/25/11/70cd3e4c/SYS202005251112216152234742_ST/SYS202005251112216152234742_ST.011.png" width="80" height="22" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,其中近似為這100名患者年齡的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).請估計該省新冠肺炎患者年齡在70歲以上()的患者比例;

2)截至229日,該省新冠肺炎的密切接觸者(均已接受檢測)中確診患者約占10%,以這些密切接觸者確診的頻率代替1名密切接觸者確診發(fā)生的概率,每名密切接觸者是否確診相互獨立.現(xiàn)有密切接觸者20人,為檢測出所有患者,設計了如下方案:將這20名密切接觸者隨機地按20的約數(shù))個人一組平均分組,并將同組的個人每人抽取的一半血液混合在一起化驗,若發(fā)現(xiàn)新冠病毒,則對該組的個人抽取的另一半血液逐一化驗,記個人中患者的人數(shù)為,以化驗次數(shù)的期望值為決策依據(jù),試確定使得20人的化驗總次數(shù)最少的的值.

參考數(shù)據(jù):若,則,,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)若有相同的單調(diào)區(qū)間,求的取值范圍;

(Ⅱ)令),若在定義域內(nèi)有兩個不同的極值點.

(i)求的取值范圍;

(ii)設兩個極值點分別為, ,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,動點PQ從點出發(fā)在單位圓上運動,點P按逆時針方向每秒鐘轉弧度,點Q按順時針方向每秒鐘轉弧度,則PQ兩點在第2019次相遇時,點P的坐標為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1為某省2018年1~4月快遞業(yè)務量統(tǒng)計圖,圖2是該省2018年1~4月快遞業(yè)務收入統(tǒng)計圖,下列對統(tǒng)計圖理解錯誤的是( )

A. 2018年1~4月的業(yè)務量,3月最高,2月最低,差值接近2000萬件

B. 2018年1~4月的業(yè)務量同比增長率均超過50%,在3月底最高

C. 從兩圖來看,2018年1~4月中的同一個月的快遞業(yè)務量與收入的同比增長率并不完全一致

D. 從1~4月來看,該省在2018年快遞業(yè)務收入同比增長率逐月增長

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若關于x的方程在區(qū)間上有兩個不同的解,

①求a的取值范圍;

②若,求的取值范圍;

(2)設函數(shù)在區(qū)間上的最小值,求的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項均不相等的等差數(shù)列{an}的前n項和為Sn,若S3=15,且a3+1為a1+1和a7+1的等比中項.

(1)求數(shù)列{an}的通項公式與前n項和Sn;

(2)設Tn為數(shù)列{}的前n項和,問是否存在常數(shù)m,使Tn=m[],若存在,求m的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案