已知x,y滿(mǎn)足約束條件
3x+5y≥15
2x+y≤4
x≥0
,則目標(biāo)函數(shù)z=x+3y的最大值是
9
9
分析:作出可行域,利用平移求出最大值和最小值,即可.
解答:解:由z=x+3y,得y=-
1
3
x+
z
3
,作出不等式對(duì)應(yīng)的可行域,
平移直線y=-
1
3
x+
z
3
,由平移可知當(dāng)直線y=-
1
3
x+
z
3
,經(jīng)過(guò)點(diǎn)C(0,3)時(shí),
直線y=-
1
3
x+
z
3
,的截距最大,此時(shí)z取得最大值,
將C(0,3)代入z=x+3y,得z=3×3=9,
即目標(biāo)函數(shù)z=x+3y的最大值為9.
故答案為:9.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用圖象平行求得目標(biāo)函數(shù)的最大值和最小值,利用數(shù)形結(jié)合是解決線性規(guī)劃問(wèn)題中的基本方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y 滿(mǎn)足約束條
x-2y≤24
3x+2y≥36
y≥1
則z=2x-3y的最大值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)P(a,b)作兩條直線l1,l2,斜率分別為1,-1,已知l1與圓O1:(x+2)2+(y-2)2=2交于不同的兩點(diǎn)A,B,l2與圓O2:(x-3)2+(y-4)2=2交于不同的兩點(diǎn)C,D,且|AB|=|CD|.
(Ⅰ)求:a,b所滿(mǎn)足的約束條件;
(Ⅱ)求:
a2-b2a2+b2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省高二文科數(shù)學(xué)競(jìng)賽試卷(解析版) 題型:選擇題

已知向量,且,若變量x,y滿(mǎn)足約束條,則z的最大值為                            

A.1             B.2         C.3            D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年河北省唐山市高二(上)第一次質(zhì)量檢測(cè)數(shù)學(xué)試卷(解析版) 題型:填空題

已知x,y 滿(mǎn)足約束條則z=2x-3y的最大值   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿(mǎn)足約束條的最小值是                                 

A.9                            B.20                          C.                        D.

查看答案和解析>>

同步練習(xí)冊(cè)答案