分析 (1)當(dāng)a=1時(shí),化簡函數(shù)求出導(dǎo)數(shù),求出斜率,然后求解切線方程.
(2)求出函數(shù)f(x)的定義域是(0,+∞).通過當(dāng)a>0時(shí),求出極值點(diǎn),判斷函數(shù)的單調(diào)性,求出函數(shù)的最值,即可.
解答 解:(1)當(dāng)a=1時(shí),f(x)=x2-2lnx,f′(x)=2x-$\frac{2}{x}$.…(1分)
因?yàn)閒′(1)=0,f(1)=1,切點(diǎn)為(1,1),切線斜率為0,
所以切線方程是y=1.…(4分)
(2)函數(shù)f(x)=ax2+2(a-1)x-2lnx的定義域是(0,+∞).
當(dāng)a>0時(shí),f′(x)=2ax+2(a-1)-$\frac{2}{x}$=$\frac{2a{x}^{2}+2(a-1)x-2}{x}$(x>0),
令f′(x)=0,即f′(x)=$\frac{2a{x}^{2}+2(a-1)x-2}{x}$=$\frac{2(x+1)(ax-1)}{x}$=0,
所以x=-1(舍)或x=$\frac{1}{a}$.…(8分)
當(dāng)0<$\frac{1}{a}$≤1,即a≥1時(shí),f(x)在[1,e]上單調(diào)遞增,
所以f(x)在[1,e]上的最小值是f(1),由f(1)=3a-2=1,得a=1;
當(dāng)1<$\frac{1}{a}$<e,即$\frac{1}{e}<a<1$時(shí),f(x)在(1,$\frac{1}{a}$)上單調(diào)遞減,在($\frac{1}{a}$,e)上單調(diào)遞增,
∴f(x)在[1,e]上的最小值是f($\frac{1}{a}$),由$f(\frac{1}{a})=\frac{1}{a}+\frac{{2({a-1})}}{a}-2ln\frac{1}{a}=1$,得$ln\frac{1}{a}=\frac{a-1}{2a}$,
∵$ln\frac{1}{a}>0$,$\frac{a-1}{2a}<0$,∴當(dāng)$\frac{1}{e}<a<1$時(shí),f(x)在區(qū)間[1,e]上的最小值不為1;
當(dāng)$\frac{1}{a}$≥e,即$a≤\frac{1}{e}$時(shí),f(x)在(1,e)上單調(diào)遞減,所以f(x)在[1,e]上的最小值是f(e),
由f(e)=ae2+2(a-1)e-2=1,得$a=\frac{2e+3}{{{e^2}+2e}}$,
∴$a-\frac{1}{e}=\frac{2e+3}{{{e^2}+2e}}-\frac{1}{e}=\frac{{2{e^2}+3e-{e^2}-2e}}{{e({{e^2}+2e})}}=\frac{{{e^2}+e}}{{e({{e^2}+2e})}}>0$,即$a>\frac{1}{e}$,
∴當(dāng)$a≤\frac{1}{e}$時(shí),f(x)在區(qū)間[1,e]上的最小值不為1.
綜上可知,當(dāng)a=1時(shí),函數(shù)f(x)在區(qū)間[1,e]上的最小值為1.…(12分)
點(diǎn)評 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,切線方程的求法,函數(shù)的最值的求法,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,1) | C. | (-1,1) | D. | (-∞,1)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{24π}{3}$ | B. | $\frac{4π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ①③ | C. | ②③ | D. | ③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com