等差數(shù)列{an}是遞增數(shù)列,前n項和為Sn,且a1,a3,a9成等比數(shù)列,S5=a52
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足bn=
n2+n+1
anan+1
,求數(shù)列{bn}的前n項的和.
考點:數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由已知條件利用等差數(shù)列的通項公式、前n項和公式和等比數(shù)列性質(zhì),求出首項和公差,由此能求出
數(shù)列{an}的通項公式.
(Ⅱ)由已知條件推導出bn=
25
9
(1+
1
n
-
1
n+1
)
,由此利用裂項求和法能求出數(shù)列{bn}的前n項的和.
解答: 解:(Ⅰ)設{an}的公差為d,(d>0)
∵a1,a3,a9成等比數(shù)列,
∴(a1+2d)2=a1(a1+8d),
整理,得d2=a1d,
∵d≠0,∴a1=d,①
S5=a52,∴5a1+
5×4
2
•d
=(a1+4d)2,②
由①②,得:a1=
3
5
,d=
3
5
,
an=
3
5
+(n-1)×
3
5
=
3
5
n

(Ⅱ)bn=
n2+n+1
anan+1
=
n2+n+1
3
5
n•
3
5
(n+1)

=
25
9
n2+n+1
n(n+1)
=
25
9
(1+
1
n
-
1
n+1
)
,
∴b1+b2+…+bn
=
25
9
[n+(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]

=
25
9
(n+1-
1
n+1
)

=
25
9
n2+2n
n+1
點評:本題考查數(shù)列的通項公式的求法,考查數(shù)列的前n項和的求法,解題時要認真審題,注意裂項求和法的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2-2ax+2+b(a>0),若f(x)在區(qū)間[0,3]上有最大值10,最小值2.
(1)求a,b的值;
(2)若g(x)=f(x)-mx在[2,4]上是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}滿足:a1=5,an+1+4an=5
(Ⅰ)求證:{an-1}是等比數(shù)列;
(Ⅱ)設數(shù)列bn=|an|,求|bn|的前2014項和S2014

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

袋中有大小、形狀相同的紅球、黑球各一個,現(xiàn)依次有放回地隨機摸取3次,每次摸取一個球.
(1)試問:一共有多少種不同的結(jié)果?請列出所有可能的結(jié)果;
(2)若摸到紅球時得2分,摸到黑球時得1分,求3次摸球所得總分為4分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某地區(qū)為了解高二學生作業(yè)量和玩電腦游戲的情況,對該地區(qū)內(nèi)所有高二學生采用隨機抽樣的方法,得到一個容量為200的樣本統(tǒng)計數(shù)據(jù)如表:
認為作業(yè)多認為作業(yè)不多總數(shù)
喜歡電腦游戲72名36名108名
不喜歡電腦游戲32名60名92名
(I)已知該地區(qū)共有高二學生42500名,根據(jù)該樣本估計總體,其中喜歡電腦游戲并認為作業(yè)不多的人有多少名?
(Ⅱ)在A,B,C,D,E,F(xiàn)六名學生中,但有A,B兩名學生認為作業(yè)多如果從速六名學生中隨機抽取兩名,求至少有一名學生認為作業(yè)多的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}為等差數(shù)列,前n項和為Sn,已知a2=2,S5=15.
(Ⅰ)求{an}的通項公式;
(Ⅱ)若bn=an•2n,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=1+
2
x
,(x>0)

(1)數(shù)列{an}滿足a1=1,an+1=
1
f(an)
,(n∈N+)
,求數(shù)列{an}的通項公式及數(shù)列{2n•an•an+1}的前n項和;
(2)設函數(shù)g(x)=
1
2
(x2+1)•[f(x)-1]
,試比較[g(x)]n+2與g(xn)+2n(n∈N+)的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設P是60°的二面角α-l-β內(nèi)一點,PA⊥平面α,PB⊥平面β,A,B為垂足,PA=4,PB=2,則AB的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

sin
23
6
π=
 

查看答案和解析>>

同步練習冊答案