一個水平放置的平面圖形的斜二測直觀圖是一個底角為
,腰和上底均為1的等腰梯形,則這個平面圖形的面積( )
試題分析:斜二測法作圖要注意:①與
軸垂直的直線,在直觀圖中畫為與
成
角的直線;②與
軸平行的線段,在直觀圖中與
軸平行,且長度保持不變;與
軸平行的線段,在直觀圖中與
軸平行,且長度為原來的一半.可計算直觀圖中梯形下底長為1+
,所以該平面圖形的面積為
,選D.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=∠PAD=90°,側(cè)面PAD⊥底面ABCD,若PA=AB=BC=
,AD=1.
(I)求證:CD⊥平面PAC;
(II)求二面角A-PD-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四棱錐
的底面
為正方形,
底面
,
分別是
的中點.
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)若
,求
與平面
所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四棱錐
中,側(cè)面
是等邊三角形,在底面等腰梯形
中,
,
,
,
,
為
的中點,
為
的中點,
.
(1)求證:平面
平面
;
(2)求證:
平面
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,矩形
,滿足
在
上,
在
上,且
∥
∥
,
,
,
,沿
、
將矩形
折起成為一個直三棱柱,使
與
、
與
重合后分別記為
,在直三棱柱
中,點
分別為
和
的中點.
(I)證明:
∥平面
;
(Ⅱ)若二面角
為直二面角,求
的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四棱錐
中,
,
,
分別為
的中點.
(Ⅰ)求證:
;
(Ⅱ)求證:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知球的直徑SC=4,A,B是該球球面上的兩點,AB=2.∠ASC=∠BSC=60°,則三棱錐S—ABC的體積為_____________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如果圓錐的側(cè)面展開圖是半圓,那么這個圓錐的頂角(經(jīng)過圓錐旋轉(zhuǎn)軸的截面中兩條母線的夾角)是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
對于四面體ABCD,以下命題中,真命題的序號為 (填上所有真命題的序號)
①若AB=AC,BD=CD,E為BC中點,則平面AED⊥平面ABC;
②若AB⊥CD,BC⊥AD,則BD⊥AC;
③若所有棱長都相等,則該四面體的外接球與內(nèi)切球的半徑之比為2:1;
④若以A為端點的三條棱所在直線兩兩垂直,則A在平面BCD內(nèi)的射影為△BCD的垂心;
⑤分別作兩組相對棱中點的連線,則所得的兩條直線異面。
查看答案和解析>>