正方體.ABCD-A1B1C1D1的棱長為l,點F、H分別為為A1D、A1C的中點.
(Ⅰ)證明:A1B∥平面AFC;
(Ⅱ)證明:B1H⊥平面AFC.

【答案】分析:(I)連BD交AC于點E,連EF,可得EF是△A1BD的中位線,得EF∥A1B,利用線面平行的判定定理即可證出A1B∥平面AFC;
(II)連結(jié)B1C,根據(jù)正方體的對角面A1B1CD為矩形,得A1C的中點H也是B1D的中點,因此問題轉(zhuǎn)化為證明B1D⊥平面AFC.利用正方體的性質(zhì),結(jié)合線面垂直的判定與性質(zhì)證出AF⊥B1D且AE⊥B1D,最后根據(jù)AF、AE是平面AFC內(nèi)的相交直線,可得
B1D⊥平面AFC,由此得到B1H⊥平面AFC.
解答:解:(Ⅰ)連結(jié)BD交AC于點E,則E為BD的中點,連結(jié)EF
∵EF是△A1BD的中位線,∴EF∥A1B
∵EF?平面AFC,A1B?平面AFC,
∴A1B∥平面AFC;
(II)連結(jié)B1C,在正方體ABCD-A1B1C1D1中,四邊形A1B1CD是矩形
∵矩形A1B1CD中,H為A1C的中點,∴H也是B1D的中點
因此,要證明B1H⊥平面AFC,即證明B1D⊥平面AFC
∵正方體ABCD-A1B1C1D1中,A1B1⊥平面AA1C1C,AF?平面AA1C1C,∴AF⊥A1B1
又∵正方形AA1C1C中,AF⊥A1D,A1B1∩A1D=A1,
∴AF⊥平面A1B1CD,結(jié)合B1D?平面A1B1CD,得AF⊥B1D
同理可證:AE⊥B1D,
∵AF、AE是平面AFC內(nèi)的相交直線,
∴B1D⊥平面AFC,即B1H⊥平面AFC
點評:本題在正方體中證明線面平行,并且探索了線面垂直的位置關系,著重考查了正方體的性質(zhì)、線面垂直的判定與性質(zhì)和線面平行判定定理等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖所示,正方體ABCD-A′B′C′D′的棱長為1,E、F分別是棱AA′,CC′的中點,過直線EF的平面分別與棱BB′、DD′交于M、N,設BM=x,x∈[0,1],給出以下四個命題:
①平面MENF⊥平面BDD′B′;
②當且僅當x=
12
時,四邊形MENF的面積最;
③四邊形MENF周長l=f(x),x∈0,1]是單調(diào)函數(shù);
④四棱錐C′-MENF的體積v=h(x)為常函數(shù);
以上命題中真命題的序號為
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

棱長為a的正方體A1B1C1D1-ABCD中,O為面ABCD的中心.
(1)求證:AC1⊥平面B1CD1;
(2)求四面體OBC1D1的體積;
(3)線段AC上是否存在P點(不與A點重合),使得A1P∥面CC1D1D?如果存在,請確定P點位置,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A'B'C'D'中,棱長為2,則異面直線A1B1與BC1的距離是
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,正方體ABCD-A′B′C′D′的棱長為1,E、F 分別是棱AA',CC'的中點,過直線E、F的平面分別與棱BB′,DD′交于M、N,設BM=x,x∈[0,1],給出以下四個命題:
①當且僅當x=0時,四邊形MENF的周長最大;
②當且僅當x=
1
2
時,四邊形MENF的面積最小;
③四棱錐C′-MENF的體積V=h(x)為常函數(shù);
④正方體ABCD-A′B′C′D′被截面MENF平分成等體積的兩個多面體.
以上命題中正確命題的個數(shù)( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓錐的底面半徑為r,高為h,正方體ABCD-A′B′C′D′內(nèi)接于圓錐,求這個正方體的棱長.

查看答案和解析>>

同步練習冊答案