設(shè)集合A=[0,
1
2
),B=[
1
2
,1],函數(shù)f (x)=
x+
1
2
,x∈A
2(1-x),x∈B
,若x0∈A,且f[f (x0)]∈A,則x0的取值范圍是(  )
A、(0,
1
4
]
B、[
1
4
,
1
2
]
C、(
1
4
,
1
2
D、[0,
3
8
]
分析:利用當(dāng) x0∈A時,f[f (x0)]∈A,列出不等式,解出 x0的取值范圍.
解答:解:∵0≤x0
1
2
,∴f(x0)=x0 +
1
2
∈[
1
2
,1]⊆B,
∴f[f(x0)]=2(1-f(x0))=2[1-(x0+
1
2
)]=2(
1
2
-x0).
∵f[f(x0)]∈A,∴0≤2(
1
2
-x0)<
1
2
,∴
1
4
<x0
1
2

又∵0≤x0
1
2
,∴
1
4
<x0
1
2
. 
故選C.
點(diǎn)評:本題考查求函數(shù)值的方法,以及不等式的解法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A=[0,
1
2
)
,B=[
1
2
,1]
,函數(shù)f(x)=
x+
1
2
,x∈A
2(1-x),x∈B
若x0∈A,且f[f(x0)]∈A,則x0的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列敘述:
①集合{x∈N|x=
6
a
,a∈N *}
中只有四個元素;
②設(shè)a>0,將
a2
a•
3a2
表示成分?jǐn)?shù)指數(shù)冪,其結(jié)果是a
5
6
;
③已知函數(shù)f(x)=
1+x2
1-x2
(x≠±1)
,則f(2)+f(3)+f(4)+f(
1
2
)+f(
1
3
)+f(
1
4
)=3

④設(shè)集合A=[0,
1
2
,B=[
1
2
,1]
,函數(shù)f(x)=
x+
1
2
 
(x∈A)
-2x+2 (x∈B)
,若x0∈A,且f[f(x0)]∈A,則x0的取值范圍是(
1
4
1
2
)

其中所有正確敘述的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A=[0,
1
2
),B=[
1
2
,1]
,函數(shù)f(x)=
x+
1
2
,x∈A
2(1-x),x∈B
,若x0∈A,且f[f(x0)]∈A,則
1
x0
的取值范圍是
[2,4)
[2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都模擬)設(shè)集合A=[0,
1
2
),B=[
1
2
,1],函數(shù)f(x)=
x+
1
2
,(x∈A)
2(1-x),(x∈B)
,若f[f(x0)]∈A,則x0的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案