16.已知x,y滿足約束條件$\left\{{\begin{array}{l}{3x-y≤0}\\{2y-3x-6≤0}\\ \begin{array}{l}x≥0\\ y≥0\end{array}\end{array}}\right.$,則$z=\frac{2^x}{{\sqrt{2^y}}}$的最小值為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.1D.${2^{-\frac{3}{2}}}$

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域.化簡(jiǎn)目標(biāo)函數(shù),利用函數(shù)的幾何意義,求解即可.

解答 解:$z={2^{x-\frac{y}{2}}}$,設(shè)$m=x-\frac{y}{2}$,要使z最小,則只需求m的最小值即可.
作出不等式組$\left\{{\begin{array}{l}{3x-y≤0}\\{2y-3x-6≤0}\\ \begin{array}{l}x≥0\\ y≥0\end{array}\end{array}}\right.$對(duì)應(yīng)的平面區(qū)域.由$m=x-\frac{y}{2}$得y=2x-2m,
平移直線,由平移可知當(dāng)直線y=2x-2m經(jīng)過(guò)點(diǎn)(0,3)時(shí),
直線y=2x-2m的截距最大,此時(shí)m最小,
∴$z={2^{x-\frac{y}{2}}}$的最小值為${2^{-\frac{3}{2}}}$,
故選:D.

點(diǎn)評(píng) 本題考查線性規(guī)劃的應(yīng)用,轉(zhuǎn)化目標(biāo)函數(shù)為線性關(guān)系是解題的關(guān)鍵之一,考查數(shù)形結(jié)合思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)方程10x=|lg(-x)|的兩個(gè)根分別為x1,x2,則( 。
A.x1 x2<0B.x1 x2=1C.x1x2>1D.0<x1 x2<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知復(fù)數(shù)z滿足$\frac{1-2i}{z}=i$,則z的共軛復(fù)數(shù)的虛部為( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知$f(x)=\left\{\begin{array}{l}1-{x^2},\;x≤1\\ mlnx,\;x>1\end{array}\right.$,若函數(shù)y=f(x)-x恰有三個(gè)零點(diǎn),則f(m)=e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖所示的程序框圖運(yùn)行的結(jié)果是(  )
A.$\frac{2014}{2015}$B.$\frac{2015}{2016}$C.$\frac{2014}{2013}$D.$\frac{2015}{2014}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)函數(shù)f(x)在(0,+∞)內(nèi)可導(dǎo),且$f({e^x})=3x+\frac{1}{2}{e^x}+1$,且f′(1)=$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<|φ|<π)在一個(gè)周期內(nèi)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求f(x)在[0,π]上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.求形如函數(shù)y=f(x)g(x)(f(x)>0)的導(dǎo)數(shù)的方法可以為:先兩邊同取自然對(duì)數(shù)lny=g(x)lnf(x),再兩邊同時(shí)求導(dǎo)得到$\frac{1}{y}•{y^'}={g^'}(x)lnf(x)+g(x)•\frac{1}{f(x)}•{f^'}(x)$,于是得到y(tǒng)′,試用此法求的函數(shù)$y={x^{x^2}}$(x>0)的一個(gè)單調(diào)遞增區(qū)間是( 。
A.(e,4)B.$(\frac{1}{{\sqrt{e}}},+∞)$C.(0,e)D.$(0,\frac{1}{{\sqrt{e}}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知在海島A上有一座海拔1千米的山,山頂設(shè)有一個(gè)觀察站P,上午11時(shí),測(cè)得一輪船在島北偏東30°,俯角為30°的B處,到11時(shí)10分又測(cè)得該船在島北偏西60°,俯角為60°的C處.小船沿BC行駛一段時(shí)間后,船到達(dá)海島的正西方向的D處,此時(shí)船距島A有$\frac{{9+\sqrt{3}}}{13}$千米.

查看答案和解析>>

同步練習(xí)冊(cè)答案