【題目】已知圓.(14分)
(1)此方程表示圓,求m的取值范圍;
(2)若(1)中的圓與直線x+2y-4=0相交于M、N兩點,且(O為坐標原點),求m的值;
(3)在(2)的條件下,求以為直徑的圓的方程.
【答案】(1) (2) (3)
【解析】
試題分析:(1)把方程化為圓的標準方程為,故有,由此解得的范圍.
(2)由直線方程與圓的方程聯立消,把直線代入圓的方程化簡到關于的二次方程,設.∵,故 ①,利用根與系數的關系可得,,代入①求得的值.
(3)由(2)可以求出兩點的坐標,由兩點間距離公式可以求出線段的長度,再由中點公式可以求出圓心.可以得到以直徑的圓的方程.當然也可以圓的直徑式直接寫出圓的方程.
試題解析:
(1)方程,可化為
,
∵此方程表示圓,
∴,即.
(2)
消去得,
化簡得.
設,則
由得
即,
∴.
將兩式代入上式得
,
解之得.
(3)由,代入,
化簡整理得,解得.
∴.
∴,
∴的中點C的坐標為.
又,
∴所求圓的半徑為.
∴所求圓的方程為.
科目:高中數學 來源: 題型:
【題目】下面給出四種說法:
①用相關指數R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③設隨機變量X服從正態(tài)分布N(0,1),若P(x>1)=p則P(﹣1<X<0)= ﹣p
④回歸直線一定過樣本點的中心( ).
其中正確的說法有( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,已知AB⊥側面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。
(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)設(0≤λ≤1),且平面AB1E與BB1E所成的銳二面角的大小為30°,試求λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A、B、C是△ABC的三個內角,向量m=(-1, ),n=(cosA,sinA),且m·n=1.
(1)求角A;
(2)若=-3,求tanC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】正方形ABCD和正方形ABEF的邊長都是1,并且平面ABCD⊥平面ABEF,點M在AC上移動,點N在BF上移動.若|CM|=|BN|=a(0<a< ).
(1)求MN的長度;
(2)當a為何值時,MN的長度最短.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一次國際學術會議上,來自四個國家的五位代表被安排坐在一張圓桌,為了使他們能夠自由交談,事先了解到的情況如下:
甲是中國人,還會說英語.
乙是法國人,還會說日語.
丙是英國人,還會說法語.
丁是日本人,還會說漢語.
戊是法國人,還會說德語.
則這五位代表的座位順序應為( )
A. 甲丙丁戊乙 B. 甲丁丙乙戊
C. 甲乙丙丁戊 D. 甲丙戊乙丁
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)的定義域為A,若x1,x2∈A且f(x1)=f(x2)時總有x1=x2,則稱f(x)為單函數,例如,函數f(x)=2x+1(x∈R)是單函數.下列命題:
①函數f(x)=x2(x∈R)是單函數;
②函數f(x)=是單函數;
③若f(x)為單函數,x1,x2∈A且x1≠x2,則f(x1)≠f(x2);
④在定義域上具有單調性的函數一定是單函數.
其中的真命題是________.(寫出所有真命題的序號)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com