分析 過圓心M作橫軸垂線,垂足為T,圓與橫軸交點為N,H,則MT=b,MH=r=$\frac{{a}^{2}}{2c}$,要使以AB為直徑的圓與x軸的公共點都在橢圓內(nèi)部,只需TH<a-$\frac{{a}^{2}}{2c}$即可,即MH2-MT2<(a-$\frac{{a}^{2}}{2c}$)2,($\frac{{a}^{2}}{2c}$)2-b2<(a-$\frac{{a}^{2}}{2c}$)2,化簡得c3-2a2c+a3<0.
解答 解:如圖所示:過圓心M作橫軸垂線,垂足為T,圓與橫軸交點為N,H
則MT=b,MH=r=$\frac{{a}^{2}}{2c}$,要使以AB為直徑的圓與x軸的公共點都在橢圓內(nèi)部,只需
TH<a-$\frac{{a}^{2}}{2c}$即可,即MH2-MT2<(a-$\frac{{a}^{2}}{2c}$)2,
($\frac{{a}^{2}}{2c}$)2-b2<(a-$\frac{{a}^{2}}{2c}$)2,化簡得c3-2a2c+a3<0
⇒e3-2e+1<0⇒(e-1)(e2+e-1)<0
∵e<1,∴e2+e-1>0⇒e>$\frac{\sqrt{5}-1}{2}$.
橢圓的離心率e的取值范圍是($\frac{\sqrt{5}-1}{2}$,1)
點評 本題考查了橢圓的離心率,關(guān)鍵要借助平面幾何知識轉(zhuǎn)化條件,屬于難題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2k+1 | B. | 2(2k+1) | C. | $\frac{2k+1}{k+1}$ | D. | $\frac{2k+2}{k+1}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ②①③④ | B. | ②③①④ | C. | ④①③② | D. | ④③①② |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com