【題目】已知在△ABC中,a,b,c分別為∠A,∠B,∠C的對(duì)邊,且滿(mǎn)足(2c﹣b)tanB=btanA.
(1)求A的大;
(2)求 的取值范圍.

【答案】
(1)解:由(2c﹣b)tanB=btanA,及正弦定理得:

(2sinC﹣sinB) =sinB ,

∵sinB≠0,

∴(2sinC﹣sinB) =

化簡(jiǎn)得:2sinCcosA﹣sinBcosA=sinAcosB,由A+B+C=π,

得到:2sinCcosA=sin(A+B)=sinC,

由sinC≠0,得到cosA= ,

∵A∈(0,π),

∴A=


(2)解:∵ = = +2+ =﹣2cosB+ +2

= sinB﹣2cosB+2= sin(B﹣ )+2,

∵B∈(0, ),B﹣ ∈(﹣ , ),

∴sin(B﹣ )∈(﹣ , ),

sin(B﹣ )+2∈(0,4)


【解析】(1)根據(jù)正弦定理及同角三角函數(shù)間的基本關(guān)系化簡(jiǎn)已知的等式(2c﹣b)tanB=btanA,由sinB不為0,在等式兩邊都除以sinB后,利用誘導(dǎo)公式及兩角和與差的正弦函數(shù)公式化簡(jiǎn),再由sinC不為0,兩邊都除以sinC,得到cosA的值,然后由A的范圍,利用特殊角的三角函數(shù)值即可求出角A的度數(shù).(2)由余弦定理,正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)所求可得 sin(B﹣ )+2,結(jié)合B的范圍,利用正弦函數(shù)的圖象和性質(zhì)即可得解.
【考點(diǎn)精析】利用正弦定理的定義和余弦定理的定義對(duì)題目進(jìn)行判斷即可得到答案,需要熟知正弦定理:;余弦定理:;;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) f(x)=,x∈R,其中 a>0.

(Ⅰ)求函數(shù) f(x)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù) f(x)(x(-2,0))的圖象與直線(xiàn) y=a 有兩個(gè)不同交點(diǎn),求 a 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解一種植物的生長(zhǎng)情況,抽取一批該植物樣本測(cè)量高度(單位:cm),其頻率分布直方圖如圖所示.

(1)求該植物樣本高度的平均數(shù)x和樣本方差s2(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(2)假設(shè)該植物的高度Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù)x,σ2近似為樣本方差s2,利用該正態(tài)分布求P(64.5<Z<96).

(附:=10.5.ZN(μσ2),P(μσZμσ)=0.682 6,P(μ-2σZμ+2σ)=0.954 4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)C2ρ=2sin θ,直線(xiàn)θ(ρ>0),A(2,0).

(1)C1的普通方程化為極坐標(biāo)方程,并求點(diǎn)A到直線(xiàn)的中距離;

(2)設(shè)直線(xiàn)分別交C1,C2于點(diǎn)P,Q,求APQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx﹣ )+2 sinωx,(ω>0)周期T∈[π,2π],x=π為函數(shù)f(x)圖象的一條對(duì)稱(chēng)軸,
(1)求ω;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車(chē)間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:

零件的個(gè)數(shù)x(個(gè))

2

3

4

5

加工的時(shí)間y(小時(shí))

2.5

3

4

4.5

(1)在給定的坐標(biāo)系中畫(huà)出表中數(shù)據(jù)的散點(diǎn)圖;

(2)求出y關(guān)于x的線(xiàn)性回歸方程;

(3)試預(yù)測(cè)加工10個(gè)零件需要多少時(shí)間.

參考公式:回歸直線(xiàn),

其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分12分).已知函數(shù)在點(diǎn)處的切線(xiàn)方程為

(1)求的值;

(2)設(shè)為自然對(duì)數(shù)的底數(shù)),求函數(shù)在區(qū)間上的最大值;

(3)證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若,則實(shí)數(shù)的取值范圍為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有次水下考古活動(dòng)中,潛水員需潛入水深為30米的水底進(jìn)行作業(yè),其用氧量包含以下三個(gè)方面:①下潛時(shí),平均速度為每分鐘米,每分鐘的用氧量為升;②水底作業(yè)需要10分鐘,每分鐘的用氧量為0.3升;③返回水面時(shí),速度為每分鐘米,每分鐘用氧量為0.2升;設(shè)潛水員在此次考古活動(dòng)中的總用氧量為升;

(1)將表示為的函數(shù);

(2)若,求總用氧量的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案