【題目】為促進農(nóng)業(yè)發(fā)展,加快農(nóng)村建設,某地政府扶持興建了一批“超級蔬菜大棚”.為了解大棚的面積與年利潤之間的關系,隨機抽取了其中的7個大棚,并對當年的利潤進行統(tǒng)計整理后得到了如下數(shù)據(jù)對比表:

大棚面積(畝)

4.5

5.0

5.5

6.0

6.5

7.0

7.5

年利潤(萬元)

6

7

7.4

8.1

8.9

9.6

11.1

由所給數(shù)據(jù)的散點圖可以看出,各樣本點都分布在一條直線附近,并且有很強的線性相關關系.

(Ⅰ)求關于的線性回歸方程;

(Ⅱ)小明家的“超級蔬菜大棚”面積為8.0畝,估計小明家的大棚當年的利潤為多少;

(Ⅲ)另外調查了近5年的不同蔬菜畝平均利潤(單位:萬元),其中無絲豆為:1.5,1.7,2.1,2.2,2.5;彩椒為:1.8,1.9,1.9,2.2,2.2,請分析種植哪種蔬菜比較好?

參考數(shù)據(jù): , .

參考公式: .

【答案】(Ⅰ).(Ⅱ)大約為11.442萬元.(Ⅲ)種植彩椒比較好.

【解析】試題分析】(I)利用回歸直線方程計算公式計算出回歸直線方程.(II)代入求得當年利潤的估計值.(III)通過計算平均數(shù)和方差比較種植哪種蔬菜好.

試題解析】

(Ⅰ), , ,

,

,

那么回歸方程為: .

(Ⅱ)將代入方程得

,即小明家的“超級大棚”當年的利潤大約為11.442萬元.

(Ⅲ)近5年來,無絲豆畝平均利潤的平均數(shù)為

方差 .

彩椒畝平均利潤的平均數(shù)為,

方差為 .

因為, ,∴種植彩椒比較好.

型】解答
束】
19

【題目】如圖,四棱錐中, 為等邊三角形,且平面平面, .

(Ⅰ)證明: ;

(Ⅱ)若棱錐的體積為,求該四棱錐的側面積.

【答案】(Ⅰ)證明見解析;(Ⅱ) .

【解析】試題分析】(I)的中點為,連接.利用等腰三角形的性質和矩形的性質可證得,由此證得平面,故,故.(II) 可知是棱錐的高,利用體積公式求得,利用勾股定理和等腰三角形的性質求得的值,進而求得面積.

試題解析】

證明:(Ⅰ)取的中點為,連接,,

為等邊三角形,∴.

底面中,可得四邊形為矩形,∴,

,∴平面

平面,∴.

,所以.

(Ⅱ)由面,

平面,所以為棱錐的高,

,知

.

由(Ⅰ)知,,∴.

.

,可知平面,∴,

因此.

,,

的中點,連結,則,,

.

所以棱錐的側面積為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在幾何體中,,均與底面垂直,且為直角梯形,,,分別為線段,的中點,為線段上任意一點.

(1)證明:平面.

(2)若,證明:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年10月9日,教育部考試中心下發(fā)了《關于2017年普通高考考試大綱修訂內容的通知》,在各科修訂內容中明確提出,增加中華優(yōu)秀傳統(tǒng)文化的考核內容,積極培育和踐行社會主義核心價值觀,充分發(fā)揮高考命題的育人功能和積極導向作用.宿州市教育部門積極回應,編輯傳統(tǒng)文化教材,在全市范圍內開設書法課,經(jīng)典誦讀等課程.為了了解市民對開設傳統(tǒng)文化課的態(tài)度,教育機構隨機抽取了200位市民進行了解,發(fā)現(xiàn)支持開展的占,在抽取的男性市民120人中持支持態(tài)度的為80人.

(Ⅰ)完成列聯(lián)表并判斷是否有的把握認為性別與支持與否有關?

(Ⅱ)為了進一步征求對開展傳統(tǒng)文化的意見和建議,從抽取的200位市民中對不支持的按照分層抽樣的方法抽取5位市民,并從抽取的5人中再隨機選取2人進行座談,求選取的2人恰好為1男1女的概率.

附: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】利用獨立性檢驗的方法調查高中生性別與愛好某項運動是否有關,通過隨機調查200名高中生是否愛好某項運動,利用列聯(lián)表,由計算可得,參照下表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5,024

6.635

7.879

10.828

得到的正確結論是(

A. 99%以上的把握認為“愛好該項運動與性別無關

B. 99%以上的把握認為“愛好該項運動與性別有關”

C. 在犯錯誤的概率不超過0.5%的前提下,認為“愛好該項運動與性別有關”

D. 在犯錯誤的概率不超過0.5%的前提下,認為“愛好該項運動與性別無關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油

D. 某城市機動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為拋物線上的兩點,的中點的縱坐標為4,直線的斜率為.

(1)求拋物線的方程;

(2)已知點,、為拋物線(除原點外)上的不同兩點,直線、的斜率分別為,,且滿足,記拋物線、處的切線交于點,若點、的中點的縱坐標為8,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題:“”,命題:“ ”.若命題“”是真命題,則實數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省級示范高中高三年級對考試的評價指標中,有“難度系數(shù)”和“區(qū)分度”兩個指標.其中,難度系數(shù)=年級總平均分總分,區(qū)分度=(實驗班的平均分—普通班的平均分)總分.

(1)某次數(shù)學考試滿分150分,隨機從實驗班和普通班各抽取三人,實驗班三人的成績分別為:147、142、137;普通班三人的成績分別為:97、102、113,通過樣本計算本次考試的區(qū)分度(精確到0.01);

(2)以下表格是高三年級6次考試的統(tǒng)計數(shù)據(jù):

,求出關于的線性回歸方程,并預報的值(系數(shù)精確到0.01).

參考數(shù)據(jù):,.

回歸方程中斜率和截距的最小二乘法公式分別為:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知拋物線Cy2=4x的焦點為F,直線l經(jīng)過點F且與拋物線C相交于A、B兩點.

(1)若線段AB的中點在直線y=2上,求直線l的方程;

(2)若線段|AB|=20,求直線l的方程.

查看答案和解析>>

同步練習冊答案