中心在原點(diǎn),焦點(diǎn)在軸上的雙曲線的離心率為,直線與雙曲線交于兩點(diǎn),線段中點(diǎn)在第一象限,并且在拋物線上,且到拋物線焦點(diǎn)的距離為,則直線的斜率為(   )

A.           B.           C.           D.

 

【答案】

D

【解析】

試題分析:∵到拋物線焦點(diǎn)的距離為,∴,∴M,設(shè)點(diǎn),代入雙曲線方程相減得,又雙曲線的離心率為,∴,∴,∴,故選D

考點(diǎn):本題考查了直線與雙曲線的位置關(guān)系

點(diǎn)評(píng):熟練掌握雙曲線中的“中點(diǎn)弦”問(wèn)題是解決此類問(wèn)題的關(guān)鍵,屬基礎(chǔ)題

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍且經(jīng)過(guò)點(diǎn)M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交橢圓于A、B兩個(gè)不同點(diǎn).
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與x軸始終圍成一個(gè)等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1的中心在原點(diǎn),焦點(diǎn)在y軸上,離心率為
5
3
,且經(jīng)過(guò)點(diǎn)M(
3
3
2
)

(Ⅰ)求橢圓C1的方程;
(Ⅱ)已知橢圓C2的長(zhǎng)軸和短軸都分別是橢圓C1的長(zhǎng)軸和短軸的m倍(m>1),中心在原點(diǎn),焦點(diǎn)在y軸上.過(guò)點(diǎn)C(-1,0)的直線l與橢圓C2交于A、B兩個(gè)不同的點(diǎn),若
AC
=2
CB
,求△OAB的面積取得最大值時(shí)的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍且經(jīng)過(guò)點(diǎn)M(3,1).平行于OM的直線l在y軸上的截距為m(m≠0),且交橢圓于A,B兩不同點(diǎn).
(1)求橢圓的方程;
(2)求m的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•馬鞍山二模)如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍且經(jīng)過(guò)點(diǎn)M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),直線l交橢圓于A、B兩個(gè)不同點(diǎn)(A、B與M不重合).
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)MA⊥MB時(shí),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年濱州市質(zhì)檢三文) (14分)  如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍且經(jīng)過(guò)點(diǎn)M(2,1),平行于OM的直線l在y軸上的截距為mm≠0),l交橢圓于AB兩個(gè)不同點(diǎn).

   (I)求橢圓的方程;

   (II)求m的取值范圍;

   (III)求證直線MA、MBx軸始終圍成一個(gè)等腰三角形.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案