【題目】如圖,矩形中,,為的中點,現(xiàn)將與折起,使得平面及平面都與平面垂直.
(1)求證:平面;
(2)求二面角的余弦值.
科目:高中數(shù)學 來源: 題型:
【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出n的值為( 。▍⒖紨(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)
A. 12B. 24C. 48D. 96
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了保護一件珍貴文物,博物館需要在一種無色玻璃的密封保護罩內充入保護氣體.假設博物館需要支付的總費用由兩部分組成:①罩內該種氣體的體積比保護罩的容積少0.5立方米,且每立方米氣體費用1千元;②需支付一定的保險費用,且支付的保險費用與保護罩容積成反比,當容積為2立方米時,支付的保險費用為8千元.
(1)求博物館支付總費用y與保護罩容積V之間的函數(shù)關系式;
(2)求博物館支付總費用的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下圖是某地區(qū)2000年至2016年環(huán)境基礎設施投資額(單位:億元)的折線圖.
為了預測該地區(qū)2018年的環(huán)境基礎設施投資額,建立了與時間變量的兩個線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時間變量的值依次為)建立模型①:;根據(jù)2010年至2016年的數(shù)據(jù)(時間變量的值依次為)建立模型②:.
(1)分別利用這兩個模型,求該地區(qū)2018年的環(huán)境基礎設施投資額的預測值;
(2)你認為用哪個模型得到的預測值更可靠?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題中,正確的命題是_________.
①已知點,則的面積為10.
②若一個三角形,采用斜二測畫法作出其直觀圖,則其直觀圖的面積是原三角形面積的倍
③過點且在兩坐標軸上的截距互為相反數(shù)的直線方程為.
④直線與直線的距離是.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某種水箱用的“浮球”,是由兩個半球和一個圓柱筒組成的.已知半球的直徑是6 cm,圓柱筒高為2 cm.
(1)這種“浮球”的體積是多少cm3(結果精確到0.1)?
(2)要在2 500個這樣的“浮球”表面涂一層膠,如果每平方米需要涂膠100克,那么共需膠多少克?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種新產(chǎn)品投放市場的100天中,前40天價格呈直線上升,而后60天其價格呈直線下降,現(xiàn)統(tǒng)計出其中4天的價格如下表:
時間 | 第4天 | 第32天 | 第60天 | 第90天 |
價格(千元) | 23 | 30 | 22 | 7 |
(1)寫出價格關于時間的函數(shù)關系式;(表示投放市場的第天);
(2)銷售量與時間的函數(shù)關系:,則該產(chǎn)品投放市場第幾天銷售額最高?最高為多少千元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三個警亭有直道相通,已知在的正北方向6千米處,在的正東方向千米處.
(1)警員甲從出發(fā),沿行至點處,此時,求的距離;
(2)警員甲從出發(fā)沿前往,警員乙從出發(fā)沿前往,兩人同時出發(fā),甲的速度為3千米/小時,乙的速度為6千米/小時.兩人通過專用對講機保持聯(lián)系,乙到達后原地等待,直到甲到達時任務結束.若對講機的有效通話距離不超過9千米,試問兩人通過對講機能保持聯(lián)系的總時長?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓(a>b>0)的離心率,過點A(0,-b)和B(a,0)的直線與原點的距離為.
(1)求橢圓的方程.
(2)已知定點E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com