設(shè)雙曲線-=1(a>0,b>0)的右焦點為F,過點F作與x軸垂直的直線l交兩漸近線于A,B兩點,且與雙曲線在第一象限的交點為P,設(shè)O為坐標原點,若(λ,μ∈R),λμ=,則該雙曲線的離心率為(  )
A.B.C.D.
C
雙曲線的漸近線為:y=±x,設(shè)焦點F(c,0),點A縱坐標大于零,則A,
B,P,因為,所以=,所以λ+μ=1,λ-μ=,解得:λ=,μ=.又由λμ=,得:×=,解得:=,所以e=.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標系中,原點為,拋物線的方程為,線段是拋物線的一條動弦.
(1)求拋物線的準線方程和焦點坐標;
(2)若,求證:直線恒過定點;
(3)當時,設(shè)圓,若存在且僅存在兩條動弦,滿足直線與圓相切,求半徑的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點是拋物線上不同的兩點,點在拋物線的準線上,且焦點
到直線的距離為.
(I)求拋物線的方程;
(2)現(xiàn)給出以下三個論斷:①直線過焦點;②直線過原點;③直線平行軸.
請你以其中的兩個論斷作為條件,余下的一個論斷作為結(jié)論,寫出一個正確的命題,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,已知橢圓=1的左、右頂點為A、B,右焦點為F.設(shè)過點T(t,m)的直線TA、TB與橢圓分別交于點M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.

(1)設(shè)動點P滿足PF2-PB2=4,求點P的軌跡;
(2)設(shè)x1=2,x2,求點T的坐標;
(3)設(shè)t=9,求證:直線MN必過x軸上的一定點(其坐標與m無關(guān)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知橢圓,雙曲線(a>0,b>0),若以C1的長軸為直徑的圓與C2的一條漸近線交于A,B兩點,且C1與該漸近線的兩交點將線段AB三等分,則C2的離心率為(     )
A.5B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線+=1的離心率,則的值為      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(2011•山東)設(shè)M(x0,y0)為拋物線C:x2=8y上一點,F(xiàn)為拋物線C的焦點,以F為圓心、|FM|為半徑的圓和拋物線C的準線相交,則y0的取值范圍是( 。
A.(0,2)B.[0,2]C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,是雙曲線的左,右焦點,若雙曲線左支上存在一點與點關(guān)于直線對稱,則該雙曲線的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,橢圓上的點到焦點的最小距離為,離心率.
(1)求橢圓的方程;
(2)若直線、兩點,點,問是否存在,使?若存在求出的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案