【題目】環(huán)境監(jiān)測中心監(jiān)測我市空氣質(zhì)量,每天都要記錄空氣質(zhì)量指數(shù)(指數(shù)采取10分制,保留一位小數(shù)).現(xiàn)隨機(jī)抽取20天的指數(shù)(見下表),將指數(shù)不低于8.5視為當(dāng)天空氣質(zhì)量優(yōu)良.

天數(shù)

1

2

3

4

5

6

7

8

9

10

空氣質(zhì)量指數(shù)

7.1

8.3

7.3

9.5

8.6

7.7

8.7

8.8

8.7

9.1

天數(shù)

11

12

13

14

15

16

17

18

19

20

空氣質(zhì)量指數(shù)

7.4

8.5

9.7

8.4

9.6

7.6

9.4

8.9

8.3

9.3

(Ⅰ)求從這20天隨機(jī)抽取3天,至少有2天空氣質(zhì)量為優(yōu)良的概率;
(Ⅱ)以這20天的數(shù)據(jù)估計(jì)我市總體空氣質(zhì)量(天數(shù)很多).若從我市總體空氣質(zhì)量指數(shù)中隨機(jī)抽取3天的指數(shù),用X表示抽到空氣質(zhì)量為優(yōu)良的天數(shù),求X的分布列及數(shù)學(xué)期望.

【答案】【解答】解:(I)由表中數(shù)據(jù)可知20天中,空氣質(zhì)量優(yōu)良的天數(shù)是12天,

∴從這20天隨機(jī)抽取3天,至少有2天空氣質(zhì)量為優(yōu)良的概率為P= =

(II)任意抽取1天,則該天空氣質(zhì)量優(yōu)良的概率為 = ,

故X服從二項(xiàng)分布X~B(3, ),

∴P(X=0)=( 3= ,

P(X=1)= × ×( 2= ,

P(X=2)= ×( 2× = ,

P(X=3)= 3=

∴X的分布列為:

X

0

1

2

3

P

∴E(X)=0× +1× +2× +3× =


【解析】(I)利用排列組合計(jì)算公式即可求出答案。
(II)根據(jù)二項(xiàng)分布的概率計(jì)算公式得出分布列,再計(jì)算數(shù)學(xué)期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣alnx+x(a∈R)
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(Ⅱ)討論函數(shù)y=f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an},{bn}滿足a1=2,b1=4,且 2bn=an+an+1 , an+12=bnbn+1
(Ⅰ)求 a 2 , a3 , a4 及b2 , b3 , b4;
(Ⅱ)猜想{an},{bn} 的通項(xiàng)公式,并證明你的結(jié)論;
(Ⅲ)證明:對所有的 n∈N* , sin

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax(a>0,a≠1)在區(qū)間[﹣1,2]上的最大值為8,最小值為m.若函數(shù)g(x)=(3﹣10m) 是單調(diào)增函數(shù),則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從6名男生和4名女生中任選4人參加比賽,設(shè)被選中女生的人數(shù)為隨機(jī)變量ξ,
求(Ⅰ)ξ的分布列;
(Ⅱ)所選女生不少于2人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,BC=a,AC=b,且a,b是方程的兩根,2cos(A+B)=1

(1)求∠C的度數(shù);

(2)求AB的長;

(3)求△ABC的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱與底面邊長都相等,A1在底面ABC上的射影D為BC的中點(diǎn),則異面直線AB與CC1所成的角的余弦值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱錐P﹣ABCD中,AB=2,PA= ,E是棱PC的中點(diǎn),過AE作平面分別與棱PB、PD交于M、N兩點(diǎn).
(1)若PM= PB,PN=λPD,求λ的值;
(2)求直線PA與平面AMEN所成角的正弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中, ADBC交于點(diǎn)M,設(shè),以、為基底表示

【答案】

【解析】試題分析:由A、M、D三點(diǎn)共線,知;由C、M、B三點(diǎn)共線,知

,所以,所以=

試題解析:

設(shè)

因?yàn)?/span>A、M、D三點(diǎn)共線,所以,即

因?yàn)?/span>C、M、B三點(diǎn)共線,所以,即

解得,所以

型】解答
結(jié)束】
20

【題目】函數(shù)的最小值為.

1)求;

2)若,求及此時(shí)的最大值.

查看答案和解析>>

同步練習(xí)冊答案