在平面直角坐標系xoy中,F(xiàn)是拋物線C:y2=2px(p>0)的焦點,圓Q過O點與F點,且圓心Q到拋物線C的準線的距離為
3
2

(1)求拋物線C的方程;
(2)過F作傾斜角為60°的直線L,交曲線C于A,B兩點,求△OAB的面積;
(3)已知拋物線上一點M(4,4),過點M作拋物線的兩條弦MD和ME,且MD⊥ME,判斷:直線DE是否過定點?說明理由.
考點:直線與圓錐曲線的綜合問題
專題:綜合題,高考數(shù)學專題
分析:(1)由圓Q過O點與F點,可得圓心Q在線段OF的垂直平分線x=
p
4
,結(jié)合準線方程,求出p,即可求拋物線C的方程;
(2)過F傾斜角為60°的直線L:y=
3
(x-1),代入拋物線方程,結(jié)合韋達定理,即可求△AOB的面積;
(3)設直線DE:x=my+t,代入拋物線方程,消去x,利用MD⊥ME,結(jié)合向量的數(shù)量積公式,即可得出結(jié)論.
解答: 解:(1)∵F(
p
2
,0)

圓心Q在線段OF的垂直平分線x=
p
4

又∵準線方程為:x=-
p
2
,
p
4
-(-
p
2
)=
3
2
,得p=2,
∴拋物線C:y2=4x;
(2)設A(x1,y1),B(x2,y2),過F傾斜角為60°的直線L:y=
3
(x-1).
y2=4x
y=
3
(x-1)
得:y2-
4
3
3
y-4=0
,
y1+y2=
4
3
3
  ,  y1y2=-4
,
S=
1
2
×|OF|×|y2-y1|
=
1
2
×1×
(y1+y2)2-4y1y2
=
1
2
16
3
+16
=
4
3
3
;
(3)設直線DE:
x=my+t
y2=4x
,可得y2-4my-4t=0,則△=16m2+16t>0(*)
設D(x1,y1),E(x2,y2),則y1+y2=4m,y1y2=-4t,
0=
MD
ME
=(x1-4,y1-4)•(x2-4,y2-4)
=x1x2-4(x1+x2)+16+y1y2-4(y1+y2)+16
=
y12
4
y22
4
-4(
y12
4
+
y22
4
)+16+y1y2-4(y1+y2)+16
=
(y1y2)2
16
-(y1+y2)2+3y1y2-4(y1+y2)+32

=t2-16m2-12t+32-16m,
即t2-12t+32=16m2+16m得:(t-6)2=4(2m+1)2,
∴t-6=±2(2m+1)即:t=4m+8或t=-4m+4
代入(*)式檢驗均滿足△>0,
∴直線DE的方程為:x=my+4m+8=m(y+4)+8或:x=m(y-4)+4,
∴直線過定點(8,-4).(定點(4,4)不滿足題意,故舍去)
點評:本題考查拋物線的方程,考查準線與拋物線的位置關系,考查向量知識的運用,考查學生分析解決問題的能力,正確運用韋達定理是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
1
4
 )x2-2x
的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U={-2,-1,0,1,2,3,4,5,6},集合M={大于-1且小于4的整數(shù)},則∁UM=( 。
A、∅
B、{-2,-1,5,6}
C、{0,1,2,3,4}
D、{-2,-1,4,5,6}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間[-2,3]上任取一個數(shù)a,則函數(shù)f(x)=x2-2ax+a+2有零點的概率為( 。
A、
1
3
B、
1
2
C、
3
5
D、
2
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知中心在原點的雙曲線,其右焦點為F(3,0),且F到其中一條漸近線的距離為
5
,則該雙曲線的方程為( 。
A、
x2
4
-
y2
5
=1
B、
x2
4
-
y2
5
=1
C、
x2
2
-
y2
5
=1
D、
x2
2
-
y2
5
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+lnx(a∈R)
(Ⅰ)當a=2時,求f(x)在區(qū)間[e,e2]上的最大值和最小值;
(Ⅱ)如果函數(shù)g(x),f1(x),f2(x)在公共定義域D上,滿足f1(x)<g(x)<f2(x),那么就稱g(x)為f1(x),f2(x)的“伴隨函數(shù)”.已知函數(shù)f1(x)=(a-
1
2
)x2+2ax+(1-a2)lnx
f2(x)=
1
2
x2+2ax
.若在區(qū)間(1,+∞)上,函數(shù)f(x)是f1(x),f2(x)的“伴隨函數(shù)”,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),經(jīng)過點P(
3
,
1
2
),離心率e=
3
2

(1)求橢圓C的標準方程.
(2)過點Q(0,
1
2
)的直線與橢圓交于A、B兩點,與直線y=2交于點M(直線AB不經(jīng)過P點),記PA、PB、PM的斜率分別為k1、k2、k3,問:是否存在常數(shù)λ,使得
1
k1
+
1
k2
=
λ
k3
?若存在,求出λ的值:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,F(xiàn)1(-c,0),F(xiàn)2(c,0)分別是雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)的左,右焦點,過點F2作x軸的垂線交雙曲線的上半部分于點P,過點F1作直線PF1的垂線交直線l:x=-
a2
c
于點Q.
(1)若點P的坐標為(4,6),求雙曲線C的方程及點P處的切線方程;
(2)證明:直線PQ與雙曲線C只有一個交點;
(3)若過l:x=-
a2
c
上任一點M作雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)的兩條切線,切點分別為T1,T2,問:直線T1T2是否過定點,若過定點,請求出該定點;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知過拋物線x2=2py(p>0)的焦點,斜率為
3
4
的直線交拋物線于A(x1,y1),B(x2,y2)(x1<x2)兩點,且|AB|=12.5.
(1)求該拋物線的方程;
(2)若O為坐標原點,C為拋物線上的一點,且
AC
OB
共線,求出C點坐標.

查看答案和解析>>

同步練習冊答案