函數(shù)的單調(diào)遞減區(qū)間為___________
函數(shù)f(x)=|x2-1|= 結(jié)合圖象寫出函數(shù)的單調(diào)減區(qū)間.
解:函數(shù)f(x)=|x2-1|=,如圖所示:

故函數(shù)f(x)的減區(qū)間為(-∞-1)和(0,1),
故答案為 (-∞,-1)和(0,1).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知y=f(x)是定義在R上的增函數(shù),函數(shù)y=f(x-1)的圖像關(guān)于點(diǎn)(1,0)對稱,若對于任意的,不等式恒成立,則當(dāng)時(shí),x2+y2的取值范圍是(   )
A.(3,7)B.(9,25)C.(13,49)D.(9,49)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
小劉家要建造一個(gè)長方形無蓋蓄水池,其容積為48,深為3.如果池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元,怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)
已知函數(shù)f(x)=x-(2a+1)x+3a(a+2)x+,其中a為實(shí)數(shù)。
(1)當(dāng)a=-1時(shí),求函數(shù)y=f(x)在[0,6]上的最大值與最小值;
(2)當(dāng)函數(shù)y=f(x)的圖像在(0,6)上與x軸有唯一的公共點(diǎn)時(shí),求實(shí)數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

當(dāng)時(shí),函數(shù)的最小值為                   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

奇函數(shù)在區(qū)間上單調(diào)遞減,,,則不等式的解集為                  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)上的減函數(shù),則實(shí)數(shù)的取值范圍      ★      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知在區(qū)間上是增函數(shù),則的范圍是
A      B      C       D

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)的定義域是非零實(shí)數(shù),且在上是增函數(shù),在上是減函數(shù),則最小的自然數(shù)等于( )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案