數(shù)列{an}滿足Sn=2n-an,n∈N*,先計(jì)算前4項(xiàng)后,猜想an的表達(dá)式,并用數(shù)學(xué)歸納法證明.

解:計(jì)算得:. 猜想
證明:當(dāng) ①n=1時(shí),計(jì)算得a1=1,結(jié)論成立;
②設(shè)n=k時(shí),,則n=k+1時(shí),,
,故當(dāng)n=k+1時(shí),猜想也成立.
綜①②可知,成立.
分析:先通過前4項(xiàng)進(jìn)行歸納猜想,用數(shù)學(xué)歸納法證明.檢驗(yàn)n取第一個(gè)值時(shí),等式成立,假設(shè),證明
,即可得到猜想成立.
點(diǎn)評:本題考查歸納推理,用數(shù)學(xué)歸納法證明等式,證明故當(dāng)n=k+1時(shí),猜想也成立,是解題的難點(diǎn)和關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足Sn=2n-an(n∈N)
(Ⅰ)計(jì)算a1,a2,a3,a4;
(Ⅱ)猜想通項(xiàng)公式an,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足Sn=2n-an(n∈N*).
(1)計(jì)算a1,a2,a3,a4
(2)由(1)猜想通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足Sn=2n-an,其中Sn=a1+a2+a3+…+an,求a1,a2,a3,a4值,猜想an,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項(xiàng)數(shù)列{ an }滿足Sn+Sn-1=
2
ta
n
+2 (n≥2,t>0),a1=1,其中Sn是數(shù)列{ an }的前n項(xiàng)和.
(Ⅰ)求通項(xiàng)an
(Ⅱ)記數(shù)列{
1
anan+1
}的前n項(xiàng)和為Tn,若Tn<2對所有的n∈N*都成立.求證:0<t≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正數(shù)數(shù)列{an}滿足Sn=
1
2
(an+
1
an
)
,其中Sn是數(shù)列{an}的前n項(xiàng)和.
(1)求Sn
(2)若bn=(
S
2
n
)
1
S
2
n+1
,是否存在bk=bm(k≠m)?若存在,求出所有相等的兩項(xiàng);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案